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EXECUTIVE SUMMARY

The main objective of this document is to describe the implementation of the different chosen
scenarios within WP6: the simulation frameworks and testbed(s), parameters for simulations and the
chosen Key Performance Indicators (KPIs) for analysis and results presentation. It also provides an
analysis of a specific common service between road and railway domain and how it has been
implemented and verified.

In the introduction, the report presents a summary of the conclusions by D6.1, to link with the previous
work done and setting the contextual framework, presenting the scenarios selected from those
defined in D6.1. As a result, a set of requirements for an experimentation testbed is outlined.

Based on these requirements, an initial proposal for technological components of an
emulator/simulator are presented and a description of the first experimentation sandbox is
presented.

Within that sandbox, the first considered scenarios implementation is presented and some of its
results commented, together with limitations of the presented experimentation framework.

A second experimentation testbed, developed as a result of the considered initial limitations is
presented, with details of some relevant scenarios and comments on its limitations.

Finally, a common/shared service implementation (Emergency Service) definition is provided,
together with the description of two different implementations to demonstrate it in the considered
testbeds.
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ABBREVIATIONS AND ACRONYMS

Abbreviation Description

CAM Cooperative Awareness Message

DENM Decentralised Environmental Notification Message
ETSI European Telecommunications Standards Institute
EU European Union

E2E End-to-End

FRMCS Future Railway Mobile Communication System

GA Grant Agreement

UPF

Horizon 2020 framework program

KPI Key Performance Indicator

Mx Mobility Scenario Number x

MQTT Message Queue Telemetry Transport
NFV Network Function Virtualization

OAl Open Air Interface

ONOS Open Network Operating System

Px Topology Scenario Number x

RAN Radio Access Network

RAT Radio Access Technology

ubDP User Datagram Protocol
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UPF User Plane Function

SYxx Scenario number xx based on Telco Case Y

SDN Software Defined Networking

TCP Transmission Control Protocol

VLAN Virtual Local Area Network

V2l Vehicle to Roadside Unit or Vehicle to Base Station
V2v Vehicle-to-Vehicle
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1 INTRODUCTION

The work presented in D6.1 was focused on the conceptual framework for the work in WP6, in relation
to coexistence of the railway and road domains and from the point of view of telecommunication
infrastructure. Within that context, D6.1 presented the systematic work carried out to define
coexistence scenarios between both domains, by considering a shared network infrastructure or two
independent infrastructures specific to each domain.

The work presented here in D6.2 presents how, based on a selection from D6.1 scenarios, a set of
requirements for an emulator framework was derived and a set of existing (software) solutions was
integrated in a software emulator. Some of the initial considered scenarios have been emulated with
this framework, and a description is provided as well herein (this relates to Milestone 4 of the project,
which was demonstrated with a project workshop in May 2022, presenting these results).

Limitations in this initial 5GRail emulator platform and consideration of additional challenges
(allocation of services in near-future cloud-edge scenarios), intended to improve the solution and,
based on it, a second emulation platform was developed and is herein presented. Moreover, as the
work in the project evolved, it was clear that one of the challenges in the project was the issue of
cross-border roaming. Due to it, the second emulator platform has been extended to enable testing
of roaming cases. This is also included in this report as well as result analysis of these experiments.

While in D6.1 we concluded that the railway-road coexistence analysis assumed that no common
services were envisioned in the near future, in the course of our work in T6.2 and T6.3 we found an
example of a cooperative service, Emergency Service, which could be of interest. This is described also
in this document as well as two different implementations tested over the first demonstrator.

All these emulation sandboxes, and the experiments carried over them, have been presented in
different peer-reviewed publications. The contents of this report are based partially on these
publications.

12
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2  INITIALLY CHOSEN COEXISTENCE SCENARIOS & TEST BED REQUIREMENTS

2.1 Coexistence scenarios

The whole range of likely scenarios were described in D6.1. The assumptions at the start of the
consideration of activities for T6.2 and T6.3, regarding the proof of concepts (POCs) to emulate, were
the following:

e The interesting issues from a communication perspective lay in traffic discrimination within
the backhaul/core network for the different domains (cars vs railway), and traffic
characterisation in coexistence scenarios (KPI assurance), regardless of the radio access status
per scenario (multiple RANs / single RAN, shared RAN / specific RAN);

e This could be implemented based on SDN-based slices over these networks;

The partners in WP6 did agree that, from all the scenarios identified in D6.1, it made sense to
also consider scenarios based on Wi-Fi technology, as a target RAN technology, for
complementarity with other cases considered in the project (WP1, WP3, and WP4), and
without excluding other technologies (5G as the target).

From the different scenarios defined in D6.1, it is possible to reduce them all to 4 basic cases, from a
Telecommunication point of view, as illustrated in Figure 1.

Road
Services
Servers ar
endpaints

Road & Rall shared ) 5 2
Core Network
= Road & Rail
Services Servers

or endpoints

Road
Core Network

iRoad & Rail shared 1
Core Network

Services Servers
or endpoints

- Rauwav .
%_ G Services 1%
el B Servers ar
- b
Rl ty\uofk"' endpoints
. pccess NetwoIm/

5181 5674 5451

Figure 1: Cases for defined scenarios, from a Telecommunication Networks perspective

Case A: where the different road and railway keep all telecommunication infrastructure separated
from each other, as in Scenario 181. This comprises Telco Cases T1 and T5 (Figure 6.4 in D6.1).

Case B: where the backhaul and core network for Road and Railway domains is common and shared,
while the radio access networks serving each of the domains are kept separated, as in Scenario
674. This comprises Telco Cases T2 and T6 (Figure 6.4 in D6.1).

Case C: where all telecommunication infrastructure (access and core networks) is common and
shared, as in Scenario 451. This comprises Telco Cases T4 and T8 (Figure 6.4 in D6.1).

Note that a fourth case could be considered where the radio access is shared for both domains, but
they have different backhaul and core networks (not illustrated in Figure 1). This comprises Telco Cases
T3 and T7 (Figure 6.4 in D6.1). This case can be studied from case C.

From this point of view, it can be concluded that the telecommunication infrastructure state is defining
the Case baseline. Within each of these cases, the different topological configuration of the road and

13
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railway infrastructure (number of lanes, number of tracks, vehicle-speeds, parallel or perpendicular
trajectories) define just variations of what we could term “environment conditions”, which do not
alter the essence of the case from the Telecommunication point of view.

It was decided among partners in WP6 that scenarios related to Case A could serve as baseline for KPls
reference, so there should not be a priory discarded or left out of consideration.

As a result, the focus for scenario selection for POCs would narrow down to Case B and Case C:
scenarios compliant with Telco Cases 2, 4, 6, 8 or in the following ranges: S2xx (Scenario base on Telco
Case 2), S4xx, S6xx, S8xx of those defined in D6.1. For those selected, an equivalent reference scenario
compliant with case A would provide baseline KPIs for comparison.

A similar discrimination and selection exercise was also performed in relation to the mentioned
“environment variables”. These determine case-variations from the point of view of Mobility and from
the point of view of Topology (as those variables defined in D6.1):

e Mobility scenarios range from M1 (Mobility Scenario 1) to M8. M4 and M5 comprises all
scenarios in the following ranges: Sx4x, Sx5x of those defined in D6.1. As discussed among
partners, the priority was identified among cases [M3-M4] and [M5-M6]. The first ones are
related to Highway, where the type of train is only characterised by the speed of the train. As
such they can be considered a single case. The second ones are related to Road, where the
difference between Tram and Urban Train is to be determined by their speed (and maybe
some infrastructure separation). Again, they could be considered as a common case, based
on the train speed as a variable. Besides, partners considered relevant to include tunnel
scenarios: a scenario where the tunnel section is shared between rail and road was considered
as likely relevant due to multipath artifacts caused by moving metallic surfaces and their
impact. From the point of view of the emulator tools, the impact of these considerations
should be translated into data-traffic effects (losses, modified bit rate or other). It was finally
concluded that the case of tunnel could be analysed for a single scenario, such as 251,
depending on the effort required and based on the availability of resources when all other
cases had been emulated.

e Topologies scenarios range for P1 (Topology Scenario 1) to P4. P1 and P4 comprises all
scenarios in the following ranges: Sxx1, Sxx4 of those defined in D6.1. It was concluded that
for topologies, the most relevant cases are P1 (roads and rail-tracks parallel) and P4 (level
crossing), with the case of tunnel (P3) as a special variation of P1 and as mentioned previously.

These initial considerations gave a baseline for POCs, based on the telco cases defined previously (A,B,
C). Over them, the mobility and topological changes could be varied to accommodate the different
scenarios. Still, these were a considerable number of scenarios to implement and test. Therefore, an
additional discrimination between MUST_HAVE (1 or 2 scenarios) and NICE_TO_HAVE (1 to 3
scenarios) was decided among partners.

A major point was made during the decision discussions: if the telecommunication impact is the
driving factor for the emulations, the coexistence scenarios to concentrate would be those that
maximise the duration of this coexistence: low speeds and longer duration from a mobility and
topology levels. Therefore, a strategy would be (e.g., for cases A, B, C) to emulate P1 mobility (e.g.,
for UrbanRail and Road), and for only one of the cases (e.g., C) to emulate the level crossing.

14
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As a result, the following table tries to summarise the selected scenarios and their priority for
implementation:

Table AO: Target Scenarios Prioritising (Must Have (MH) vs Nice to Have (N2H))

Scenario
S241:

There is a single technology in the access network, although each
domain has its own dedicated RAN and both share the core network.
Highway and High-Speed Train for mobility cases.

Track parallel to road, open air/bridge, same plane as topological
setup.

S2(5/6)1:

S441:

There is a single technology in the access network, although each
domain has its own dedicated RAN and both share the core network.
Road and Tram / Urban Train.

Track parallel to road, open air/bridge, same plane as topological
setup.

There is a single technology in the access network, the RAN is shared,
and both also share the core network.

Highway and High-Speed Train for mobility cases.

Track parallel to road, open air/bridge, same plane as topological
setup.

S4(5/6)1:

There is a single technology in the access network, the RAN is shared,
and both also share the core network.

Road and Tram / Urban Train.

Track parallel to road, open air/bridge, same plane as topological
setup.

S4(5/6)3:

There is a single technology in the access network, the RAN is shared,
and both also share the core network.

Road and Tram / Urban Train.

Track parallel to road, tunnel, and same plane.

S4(5/6)4:

S6(5/6)1
[

[

[
$8(5/6)1

[

There is a single technology in the access network, the RAN is shared,
and both also share the core network.

Road and Tram / Urban Train.

Track perpendicular to road, open air, same plane (level crossing).

There are different technologies in the access network, each domain has
its own dedicated RAN and both share the core network.

Highway and High-Speed Train for mobility cases.

Track parallel to road, open air/bridge, same plane as topological setup.

There are different technologies in the access network, each domain has
its own dedicated RAN and both share the core network.

Road and Tram / Urban Train.

Track parallel to road, open air/bridge, same plane as topological setup.

There are different technologies in the access network, the RAN is shared
as well as the core network.

MH N2H
X
X
X
X
X
X
X
X
X
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e Road and Tram / Urban Train.
e Track parallel to road, open air/bridge, same plane as topological setup.

Summarising: 3 main scenarios were defined as main targets for the POCs implementation + the
baselines corresponding to the respective Cases A: $2(5/6)1, S4(5/6)1 and S4(5/6)4 + S1(5/6)1 and
S1(5/6)4.

From the Nice to Have scenarios from the table, the proposed priority was the following: S4(5/6)3,
S6(5/6)1, S441, S241, S641 and S8(5/6)1.

2.2 Testbed / Demonstrator requirements

With the context described in the previous section as initial foundation for the work in T6.2, the

following requirements were established for the emulation environment, as an enabler for emulation

of the selected railway/road coexistence scenarios:

1.

5G-based connectivity should be available or emulated to endpoints.
Wi-Fi-based connectivity should be available or emulated to endpoints.
It should be possible to define mobility for endpoints (speed, positioning / trajectory),
frequency, quantity, etc.
It should be possible to define multiple wireless network interfaces for endpoints.
It should be possible to define / generate traffic from endpoints.
It should be possible to define radio channel characteristics for the radio link or to “modulate”
traffic to mimic those characteristics (packet losses, delays ...).
It should be possible to define different network topologies both for wireless “access points”
and fixed network components.
It should be possible to programmatically control the behaviour of the network elements.

e Network entities should provide SDN (OpenFlow) interfaces.

e VLAN tagging/un-tagging and tag-based routing should be supported.
It would be nice to have a graphical interface, which could be used to present emulation
results.

In relation to Requirement 5, identification of traffic flows/services for all the scenarios followed. It
was decided to define similar flows for all cases. From Table 10. 1 in D6.1 the following were selected:
¢ Critical Voice/Data/Video Communication
¢ Performance Voice/Data/Video Communication
¢ Business Voice/Data/Video Communication

These can be mapped to the following uses from Table 10.2 in D6.1:

5.1: On-train Outgoing Voice communication from train driver to controller.
5.9: Automatic Train Protection communication.

5.10: Automatic Train Operation communication.

5.15: Railway Emergency Communication.

5.27: Critical real time video.

5.28: Critical Advisory Messaging services - safety related.
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3 INITIALDEMONSTRATION SANDBOX

Based on the requirements presented in the previous section, an initial design for a sandbox serving
as the base for the emulation platform was considered. The primary aim of this emulator was to enable
the various coexistence scenarios identified to be implemented in a realistic network environment,
allowing both shared and separate networks to be set up. The 5G-related components have been
integrated into an improved version of this emulator, presented in section 3. Identification of existing
(open source) components providing the required features was performed in this first step and the
work in T6.2 was based on integration efforts of those existing open-source components, towards a
stable sandbox. This is described in the following section.

3.1 Sandbox Design and Initial Implementation

The first step was to define the tools used to implement the communication networks needed to
deploy railway applications. For network emulation, various emulators exist in the literature, such as
Riverbed modeller [1], Omnet++ [2] and NS-3 [3]. All these are rather limited in terms of multiple
access technologies/potentially shared network infrastructure emulation SDN support (potential
solution ofr network management). A network emulator usual for SDN-based networks management
is Mininet [4]. A fork to emulate Wi-Fi networks exists in Mininet, Mininet-WiFi, which can integrate
with external SDN controllers, such as Open Network Operating System (ONOS) [5]. Considering the
scenarios selected initially, this became our initial preferred set for the emulator. Efforts to integrate
Mininet and SUMO [6] were carried out with success. As a result, an initial proof of concept for the
emulator was built as a virtual machine, which could be reused by both research teams (UGE and DTU)
in a common, homogeneous setup.

The requirement to provide 5G native features could be added to this setup by attaching an external
5G emulator such as those from Open Air Interface (OAl) [7]. Mobility issues would be the limiting
factor for OAIl, so further investigation targeting augmenting Mininet-WiFi with 5G features was
carried out without satisfactory results.

While Requirements 4 and 6 (cf. Section 1.2) are inherent features of Mininet-WiFi, it was necessary
to determine to what extent the existing interfaces and propagation models could be reused. Likewise,
and in relation to requirement 1 on 5G, it appeared necessary to link to an additional tool to generate
some channel effects. Instead, we decided on emulating those effects at network level using NetEm
[8] or similar tools to “modulate” the traffic from a packet point of view: drops, bursts, delays, etc.

Validating these integration assumptions and the rest of requirements took considerable part of the
initial efforts in T6.2. Once this was completed, to speed up the production of results, the issue of 5G
radio integration in the emulator was postponed and priority was given to scenario creation and
testing. As a result, a number of tests were performed to validate the architecture designed for this
emulator as well as the functionality of the container-based SDN controller (ONOS version 2.5)
installed in the emulator's virtual platform. Furthermore, a number of example applications was
ported to this controller version and issues related to development differences for the updated
software version were faced and solved. The efforts resulted in the SDN functionality fully tested and
applicability and implementation methodology documented and ready for the creation of the selected
cases later on, including:
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e Functionality to enable SDN-based slicing of a target network.
e SDN-based management of handover from cell to cell.

Also, a private GitHub repository was created for the project and subfolders specific for the different
tasks defined, so that the different work and code could be updated and available to UGE and DTU
teams. All the tests and code created during were uploaded and available there.

By early 2022 a complete sandbox with multiple components allowing it to cope with most of the
initial requirements was ready and a set of demonstration cases were completed during the spring as
required by MS4.

The initial design and a description of its components is the following: Based on the requirements
presented above, the ONOS SDN controller [5] was selected to programmatically control the network
topology, and Mininet—WiFi [9] was selected to define the network topology. The tool SUMO [6] was
chosen for the graphical representation of the selected scenarios. As displayed in Figure 2, these
components were installed in a Virtual machine, which allowed to have a duplicated setup for the
different teams working on the recreation of scenarios. The key properties of each of them is briefly
explained in the following.
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Figure 2: Emulation Platform Components

3.1.1 ONOS SDN Controller
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The ONOS software-defined network controller is an open-sourced SDN and network function
virtualisation (NFV) controller. A simplified programmatic interface makes ONOS an ideal platform for
operators searching to build innovative and advanced network services. ONOS has the ability to
configure and control the network by programming the functionality and reducing network protocol
implementation requirements. The ONOS cloud controller integrates intelligence, enabling end-users
to easily create new network applications without having to change the data plane [5].

3.1.2 Mininet—WiFi

Mininet—WiFi [9] is a software-defined network emulator. It is a branch of Mininet [4] embedded with
additional functionalities such as the ability to define and configure Wi-Fi access points and nodes with
moving capability based on Linux wireless driver and simulation driver 80211 hwsim [30]. Using
Mininet—WiFi, users can define different network topologies, where host/nodes can be defined with
multiple wireless interfaces. Along with these, Mininet—WiFi supports defining radio parameters such
as operating frequency channel, propagation model, coverage range, and transmission power (Tx-
Power). The network topologies developed with Mininet—WiFi have the potential to be controlled
programmatically, based on OpenFlow protocol versions 1 through 5. Since it works on the Linux
wireless driver 80211 hwsim, it does not have the ability to emulate 5G-based connectivity.
Therefore, it can be observed that Mininet—WiFi fulfils the requirements that are taken into
consideration for this practical work. Only Requirement 8 is not covered by this selected tool. We
discuss this in the Conclusions (Section 3.11). Mininet—WiFi installation files and processes are
available at [9,24].

3.1.3 SuMO

Simulation of Urban MObility, commonly known as SUMO [6,25,26], is an open-sourced traffic
simulator used to design and visualise the mobility of vehicular networks. SUMO supports features
such as multimodal and continuous mobility of selected nodes/stations. Using SUMO, users can define
the speed and quantity of selected nodes (cars, train, tram, bicycle, etc.). Based on the user’s interest,
the simulation area can be extracted directly from the open street map, where users can select the
intended simulation area and download the simulation map files. Further, an additional feature can
be added that shows the map area with assigned access points and nodes in a graphical manner. The
authors of [27,28] used SUMO for visualization, modelling, and defining nodes in traffic routes.
Therefore, SUMO is considered to fulfil Requirement 9 mentioned previously.

3.1.4 Integration of Initial components

Figure 2 represents the test setup overview. All the selected tools that are considered to emulate the
railway and road coexistence scenarios are installed on a virtual machine. The considered network
topology is created using Mininet—WiFi for road and railway coexistence scenarios. To control the
functionality of the network topology, an SDN application is developed, installed, and activated for
the ONOS SDN controller. The SDN application is developed to support the moving of end nodes and
the inter-cell handover of created nodes in a defined virtual space. It also has the ability to
differentiate the data traffic based on VLAN tagging. Detailed information about this developed SDN
application is elaborated in Section 8. SUMO is integrated with Mininet—WiFi to graphically represent
the movement of network nodes on an open street map.
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3.2 Final Selected Tools to Generate Data Traffic to Validate the Scenarios

Table 2 shows the selected tools to generate the different kinds of data traffic compliant with the real
case scenario.

Table 1: Selected tools to generate different kinds of data traffic for compliance with real case scenario

Scenario Considered Tool Tool Information
to Demonstrate
the Scenario
e Voice communication for Operational Iperf3 Iperf3 can send UDP and TCP
Purpose, packets from one host to another.

e Standard Data Communication

e Critical Data Communication Scapy Using Scapy, we can define our
Very Critical Data Communication data packets and send them to the
Messaging network. Using Scapy, messaging

and critical data communication is
demonstrated

e (Critical Video Communication for VLC Player To demonstrate video
Observation Purpose transmission from train or car to

e Very Critical Video Communication the assigned server, a VLC player is
Associated with Train Safety il

e Measure Network Quality of Services MTR MTR tool has the capability to
(QoS) measure the latency, packet loss,

and jitter of the network.

3.3 ONOS SDN Application for Data Traffic Slicing

The most significant task of this empirical work is to design and develop SDN applications capable of
fulfilling the following objectives:

e Supports handover/moving capability of nodes/hosts.

e Differentiates the data traffic based on VLAN tagging/slicing.

e Is scalable to support any kind of network topology.

An SDN data-forwarding application has been created using ONOS JAVA APIs [5], which has been
deployed in the ONOS controller with the aim of enabling network slicing and differentiating data
traffic between railways and roads. The application ensures that only trains can communicate with
other trains and assigned rail service servers, while cars can only communicate with other cars and
assigned car service servers. In addition, the application manages the movement and handover of
nodes between assigned access points/cells. The application uses the packet processor, an ONOS API
that defines the header context of packets and activates the developed applications. The application
creates two arrays, one containing the IP addresses of all cars, and the other containing the IP
addresses of all trains. The application makes decisions on whether a data packet should be forwarded
or dropped between the nodes, switches, and access points. Figure 3 illustrates the various steps
involved in the developed ONOS application. Once the application is installed and activated, it
initialises the packet processor and activates the two IP address arrays.
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The developed ONOS application has been designed to support IPv4 data packets. When an IPv4

packet arrives at any access point or switch, the application checks its forwarding table/rules. If there

are no forwarding rules for the source and destination IP pair at the current switch/access point, the

packet is sent to the ONOS controller as an OpenFlow "PacketIn" message for processing. The

application checks whether both the source and destination IPs belong to the same network slice

(trains or cars), and if they do not, it installs a packet drop rule at the current switch/access point using

the OpenFlow13 protocol. This disables any traffic between cars and trains, and their assigned service

servers.

If the source and destination IP pairs belong to the same network slice, the application checks whether

the data packet is tagged with a VLAN ID or not. If the packet is not tagged, and the source and

destination hosts are connected to the same access point/switch, the application installs a forwarding

rule using the OpenFlow13 protocol at the current access point/switch and forwards the data packet

to the destination host/node. If the data packet is not tagged and the source and destination

host/node are connected to the same access point/switch, the application tags the data packet with

a VLAN ID based on the network slice. The application uses the number 3 as the VLAN ID to tag the

data packets from/to railways/trains and the number 4 to tag the data packets from/to roads/cars.

The application then installs the forwarding tag rule and forwarding untag rule using the OpenFlow13

protocol at the current access point/switch for the IP pair and forwards the data packet to the next

switch. If the data packet is tagged with a VLAN ID and the source and destination host/node are
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connected to the same access point/switch, the application installs the forward tag rule and untag
rule for the given source destination IP pair at the current access point/switch. If the data packet is
tagged with a VLAN ID and the host/node is not connected to the same access point/switch, the
application installs the forward rule at the current access point/switch and forwards the data packet
in the network.

If nodes move from one location to another and connect to the nearest assigned access points, the
application informs the controller via a "PacketIn" message about the position of the nodes and the
connected access points.

3.3.1 VLAN Tagging

VLAN tagging is a technique that enables the creation of several networks at Layer 2 of the core
network [22]. It involves adding a VLAN ID to the data header as an extra element to the Ethernet
header of a packet. This assigned tag can be utilised as a filtering criterion for the forwarding operation
at switches/access points. By matching the tag of the data packet header, the VLAN tag determines
which part of the network a data packet belongs to.

In the developed ONOS application, Figure 4 illustrates the use of VLAN tagging to label data packets.
The network consists of edge switches S1, S2, S7, and S8, and core switches S3, S4, S5, and S6. Access
points apl, ap2, and ap3 serve as access network elements for cars, while ap4, ap5, and ap6 serve as
access network elements for trains. When a data packet is transmitted from a car to the CarServer,
access point apl adds a VLAN ID of 4 (cars' slice) to the data packet header and sends it to the next
switch S3. S3 matches the VLAN ID and forwards the packet to S5, which also matches the VLAN ID
and sends the data packet into the network. When the data packet reaches the edge switch S7, where
the destination host CarServer is connected, S7 removes the VLAN ID and forwards the data packet to
the CarServer.

Similarly, when a train's data packet is sent, access point ap4 tags the data packet with VLAN ID: 3
(trains' slice). Core network switches S4 and S6 match the VLAN ID of the data packet and send it into
the network. When the data packet arrives at switch S8, it removes the VLAN ID and forwards the data
packet to the host rail server.
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Figure 4: Data Packet Tagging

Tools described in Table 2 are used for the all the considered scenarios S1(5/6)1, S1(5/6)4, S2(5/6)1,
S4(5/6)1 and S4(5/6)4 to generate the data traffic which can mimic the actual data traffic. Section 3.4
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provides the detailed investigation test for the scenario S1(5/6)1 to validate the considered tools to
emulate the coexistence scenarios of railways and roads. Rest of the considered scenarios are also
emulated and validated with the considered tool. For the scenarios S1(5/6)4, S2(5/6)1, S4(5/6)1 and
S4(5/6)4 test data are presented in the Section 71 Appendix of this documentation.

3.4 Implementation and Tests for Coexistence Scenario 1

As a reminder, $1(5/6)1: Different Access Network and Different Core, Single Serving Technology,
Track Parallel to Road: This scenario is considered as the baseline scenario to investigate the
coexistence of railway and road scenario telecommunication services infrastructure. In this scenario,
both domains, i.e., railways and roads, have their own dedicated radio access network (RAN) and
dedicated core. Considered access points and cores work on a single technology/radio frequency.
Along with this, railway tracks are kept parallel to roads.

Interface between
Switches and Ap

Car Service Server

‘.7 Railway Service Server

" ONOS SDN Controller '

Figure 5: $1(5/6)1 Different Access Network & Different Core, Track parallel to Road

3.4.1 Topology

A Python script is utilised to generate a network topology with Mininet-WiFi where trains and cars are
allocated separate access networks. Both domains’ haves their own core network, and railways have
parallel tracks to roads. Figure 5 showcases the S1(5/6)1 scenario, where the forwarding elements of
the topology are programmatically managed by an ONOS SDN controller. The network switches and
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access points are devices based on SDN and are managed and controlled through the OpenFlow
protocol.

The network topology for the S1(5/6)1 scenario, created with Mininet-WiFi, is illustrated in Figure 6.
Hosts Carl, Car2, and Car3 are used to represent cars, while Tral, Tra2, and Tra3 represent trains.
Access points apl and ap2 are allocated for roads, with access point apl being connected to switch
S11 and access point ap2 to switch S33. Switch S22 is connected to both S11 and S33. The host
"CarServer" is defined as the road service server and is linked to switch $22. Access points ap3 and
ap4 are assigned for railways, with access point ap3 being linked to switch S44 and access point ap4
to switch S66. Switch S55 is connected to both S44 and S66. The "RailServer" host is defined as the
railway service server and is linked to switch S55. Nodes Carl, Tral, and Tra3 are configured with the
capability to move to emulate moving cars and trains in this scenario. Figure 7, which is created by
Mininet-WiFi, displays the positions of nodes and access points before handover/moving.

CarServer

172.17.0.2

L-.‘J Devices 10

544 §55

ol :a Tra3| c
RailServer =

Figure 6: S1(5/6)1 Different Access Network & Different Core, Track parallel to Road: ONOS Screenshot
(Before Handover)
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Figure 7: : S1(5/6)1 Hosts and Access Points: Mininet-WiFi Graph
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3.4.2 Handover/Moving

To perform a handover/mobility analysis, Carl, Tral, and Tra3 nodes have been configured with
mobility capability. After 60 seconds, Carl initiates movement towards access point ap2, Tral starts
moving towards access point ap4, and Tra3 moves towards ap3. During their movement, Carl pings
Car2, while Tral pings Tra2. Figure 8 shows the results of the ping test, indicating that when Carl
reaches the edge of access point apl and enters the coverage range of access point ap2, it switches
its connection from apl to ap3. Similarly, when Tral enters the coverage range of access point ap4, it
switches its connection from ap3 to ap4.
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Figure 8: Checking Connectivity During Moving

To test the network connectivity and handover between assigned access points, both selected nodes
(Carl and Tral) are pinging their respective service servers. As shown in Figure 8, when Carl and Tral
cross the coverage range of their previously connected access points, they automatically switch to the
nearest access point (ap2 for Carl and ap4 for Tral). The figure also indicates that there is no packet
loss during the handover process.

To further verify the handover and mobility functionality of the nodes, the command "Carl iw dev
Carl-wlanO link" is executed for Carl, and "Tral iw dev Tral-wlanO link" is executed for Tral, both
before and after the nodes' movement. Figure 9 shows that Carl was initially connected to ap1, but
after the handover, it successfully switched to ap2. Similarly, Figure 10 shows that Tral was initially
connected to ap3, but after the movement, it successfully switched to ap4. Figure 11 displays the
topology after the nodes' movement, indicating that Carl is now connected to ap2, and Tral is
connected to ap4.
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Figure 9: Connected Access Point for Carl Before and After Handover/Moving
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Figure 10: Connected Access Point for Tral Before and After Handover/Moving

Figure 7 illustrates the initial position of nodes and access points for scenario S1(5/6)1 before the
movement, while Figure 12 displays their positions after the movement and handover. A comparison
of these two figures indicates that Mininet-WiFi has the capability to effectively simulate moving and
handover scenarios for coexisting railway and road environments. Although there is a delay in the
handover process, there is no recorded data loss. This delay occurs due to the network joining process
carried out by the nodes/stations during the handover.
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Figure 11: S1(5/6)1 Different Access Network & Different Core, Track parallel to Road: ONOS Screenshot
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Figure 12: S1(5/6)1 Hosts and Access Points: Mininet-WiFi Graph (After Handover)

3.4.3 Reachability Test and Data Traffic Differentiation

The test was conducted for all nodes and hosts connected to the network topology S1(5/6)1, and the
results are presented in Table 3. Based on the table, it is evident that Cars can only communicate with
other Cars and the assigned road service server, which is CarServer. On the other hand, Trains can only
communicate with other Trains and the designated railway service server, which is RailServer.
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Table 2: Reachability Test

Src/Dst Carl Car2 Car3 CarServer Tral Tra2 Tra3 RailServer
Carl a a a ] X X X X
Car2 a a a 0] X X X X
Car3 a a a 0] X X X X

CarServer U u U u X X X X
Tral X X X X ] a a a
Tra2 X X X X ] U U U
Tra3 X X X X ] a a a

RailServer X X X X u U U U

3.4.4 TCP and UDP Data Transmission

The purpose of conducting this test is to showcase the standard data communication between cars
and CarServer, as well as between trains and RailServer. Figure 14 illustrates the transmission of UDP
data packets, while Figure 14 illustrates the transmission of TCP data packets from Tral to RailServer.

In this case, Tral is functioning as a client, while RailServer is configured as a listening server.
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————————————————————————— [ 7] 9.00-10,00 sec 123 KBytes 1,05 Mbits/sec 0,413 ns 0791 (0X)
[ ID] Interval Tranzfer Bitrate Jitter  Lost/Total Datag@[ 7] 10,00-10,05 sec 4,24 KBytes 729 Khits/zec 0,349 nso O3 (0X)
Lo S |t e e
[ 7] 0.,00-10,00 sec 1,75 WBytes 1,00 Hbitsdzec 0,000 me O/906 (02) send@[ ID] Interwval Transfer Bitrate Jitter  Lost/Total Datag
er rans
[ 7] 0,00-10,056 =ec 1,25 WBytes 1,04 Hbitsfzec 0,343 me 0/305 (0] rece®[ 7]  0,00-10,05 sec 1,25 MBytes 1,04 Mbitsdszec 0,343 ne 0/905 (0¥] rece
iver iver
iperf Done, Serwver liztening on 3
root@5GRai INPE s home/student/ITUsCodeTest ing My Topo/Mininet _Topologies/Consider
ed_Scenariot I 0

Figure 13: UDP Data Packet Transmission from Tral to RailServer
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ed_Scenario# 1per‘F3 -z 192,1658,7,104 -p Feruer‘ listening on 3 I
Connecting to host 192,168.7,104, part 3
[ 7] local 192,162,7.101 port 28208 connected to 192,162,7,104 port 3 Accepted connection from 192,168,7,101, port 38304
T 107 Interval TransTer TTtrate Tetr - Lwng 7] local 192,168,7.104 port 3 connected to 192,168,7.101 port 38308
[ 7] o0,00-1,00 sec 1,20 HBytes 10,1 Mbitsdzec 0 76.4 KBytes ID] Interwal Tranzfer Bitrate
[ 71 1.00-2.00 =ec 1.06 MButes .86 Mbits/sec 1] 122 KBytes 7 0.00-1,00  =ec 857 KBytes 7.02 Mbitsdzec
[ 7] 2,00-2,00 sec 1,24 HBytes 10,4 Mbits/sec ) 167 KBytes 7 1,00-2,00  =ec 899 KBytes 7,37 Mbits/sec
[ 7] 3.00-4,00 =sec 827 KBytes B,77 Mbits/sec 0 212 KBytes 7 2,00-3,00  =ec 898 KBytes 7,36 Mbits/sec
[ 7] 4,00-5,00 sec 1,43 MButes 12,0 Mbits/sec 4] 206 KBytes i 3,00-4,00  =ec B394 KBytes V.32 Mbitzszec
[ 7] G5.00-6.00 sec 1,18 HBytes 9,91 Mbitsdsec 0 201 KBytes 7 4,00-6,00  sec 895 KBytes 7,33 Mbitsdsec
[ 7] B.00-7.00 sec 700 KBytes 05,73 Mbits/sec 0 Z4E KBytes 7 G,00-6,00  =ec 899 KBytes 7.37 Mbits/sec
[ 71 7.00-8,00 sec 1,55 MBytes 13,0 Mbits/zec 0 390 KBytes 7 B,00-7,00  =ec 901 KBytes 7,38 Hbitaszec
[ 7] 8.00-9.00 sec 891 KButes 7.30 Mbits/sec 0 436 KBytes 7 T.O0-8,00  =ec 892 KBytes 7.31 HMbitsdzec
[ 71 9.,00-10,00 sec 954 KBytes 7,82 Mbits/sec 0 022 KBytes 7 2,00-9,00  sec 901 KBytes 7,28 HMbitsdsec
————————————————————————— 7 9,00-10,00 sec 899 KBytes 7,37 Mbits/sec
[ II] Interval Tranzfer Bitrate Retr 71 10,00-10,61 sec 547 KBytes 7,35 Mbits/sec
[ 7] 0,00-10,00 zec 11,0 HBytes 9,19 Mhits/sec 0 sender - - - - - - - oo o dn o dnsas
[ 71 o0,00-10,61 sec 9,25 MBytes 7,32 Mbits/sec receiver [ ID] Interval Transfer Bitrate
[ 71 0,00-10,61 sec 9,26 MBytes 7,32 Hbits/sec receiver
iperf Done,
root@5CRail1NPE: home/student ITUsCodeTest ing /MyToposHininet_Topologies/Conzider MServer liztening on 3
ed_Scenariod i 0

Figure 14: TCP Data Packet Transmission from Tral to RailServer

3.4.5 Link Capacity Test

The bandwidth between two network links is being measured using the iperf tool in this test. The

command "iperf <Host1> <Host2>" is used to measure the bandwidth between the hosts. The

measurement of link capacity between Carl and CarServer and Tral and RailServer is shown in Figure

15. The obtained bandwidth measurement is sufficient for transmitting and receiving messages, voice,

and video data in coexistence scenarios for both roads and railways.

%% Starting CLI:
mininet-wifi=} 1pert Carl CarServer

**% lResults: ['7.36 Mbits/sec', '9.24 Mbits/sec']
mininet-wifli>

Figure 15: Link Capacity Test

3.4.6 Latency Test and Network Jitter Test

To measure losses, latency, and network jitter, the MTR tool is utilised. To perform the latency test,

100 UDP and TCP data packets are transmitted from Carl to CarServer and Tral to RailServer. For this

network topology, the latency ranges from 4.8 to 5.1 milliseconds, as displayed in Figures 16 and 17.

Figures 18 and 19 represent that the network jitter ranges from 4.6 to 4.8 milliseconds.
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rootEhGRai LWPE: Fhomestudent A ITUzCodeTest i ng My ToposHininet _Topologies/Consider

ed_Scenarin#|mtr - -n -c 100 1582,168,0,204 -u -P 3

Starty 20Z3-0d-TETII 159 TE+IA

HOST: GGRaillPE Logs¥ 5nt Last  |Avg | Best  llrst Stllew
1,1-- 132,188,0,204 L0 100 5.8 W.3| 5.5 H3,2 B.H

root@hGRai PG : Ahomes student /ITUsCodeTest ingMyToposMininet _Topologies/Conzider

ed_Scenario# mtr -r -n -c 100 192,168,0,204 -T -F 3 |

Start: 2023-04-03T11:57 1240200

HOST: GGRailWPE Loz=¥ 5Snt  Last |[Avg| Best llrst Stlew
Lol== 132,168.0,04 QL0% 100 a4 |b.1] &4 BO4 B.H
root@hGRai lIPE : Ahomed student / ITUsCodeTest ingMyTopos/Mininet _Topologies Conzider

ed_Scenario# ]

Figure 16: Latency Test from Carl

_— T

rootB5GRa1 PG AhomesztudentITUzCodeTest ing/MyToposMininet _Topologiez Conzider
ed_Scenario#|mtr -r -n -c 100 192, 168,7.104 -u -P 3 |
Start: 2023-04-03T11:51:05+0200
HOST: GBGRailliPE Lozs®  5Snt Last |[Awg| Best lWrst Stlew

1, =182 165, 7404 1,0 100 3.4 |4.,9| 3.4 EBEE.B E.5
rootBEGREai HIPE: Ahomes studentITU=CodeTest ing/MyToposMininet _TopologiesTonsider
ed_Scenario#|mtr -r -n -c 100 192,168,7,104 -T -P 3 |
Start: 2023-04-03T11:53:14+0200

HOST: SGRailliPE Lozs#  5Snt Last  [Hwg| Best lWrst StDew
1.01-= 192 168, 2,104 0.0 00 do |d.8 3.5 BE.E B3
rootBSGRai IWPE: Ahomes studentITU=CodeTest ing/MyToposMininet _Topologies/Conzider

ed_Scenario# ]

Figure 17: Latency Test from Tral

rootBEGREa 1 LWPE: Shome/student  ITUsCodeTest ingMyTopos/Mininet_Topologies/Consider
ed_Scenario#|mtr —r -n —c 100 -o "LS BAWY MI" 192,168,0,204 |
Start: 2023-04-03T12:01:01+0200
HOST: BGRaillPE Lozsd  Snt Best  [Avg] West Stlev  Jawg Jint

1,1-- 192,168,0,204 0.0 100 .5 2| bfsg BB 1.6 1b.E
rnut@iﬁﬁai1MPE:thmefstudEntHDTUSEDdETestingHHHTDanHininet_TDpulngiesHEDnsidered_Scena
rio#

Figure 18: Jitter Test from Carl

root@aGEai TMPE: Ahomes student TITHzCodeTest ingMyToposMininet_Topologies Tonzidered_Sce

nario# mtr -r —n —c 100 -o "LS BAWY MI" 192,168,7,104

Start: Z023-04-03T12:02:51+0200

HOST: SGRailWPE Losz¥ Snt  Best  [Awg| Wrst Stlev  Javg Jint
1,1-- 132,168,7,104 Q.0 100 3.4 |4.6| 43,1 4,1 1.2 10,3

PDDt@EGﬁai1MPE:thmefstudentHDTUSEDdETestingHHHTDpDHHir1ne _Topologies Considered_Sce

nario#

Figure 19: Jitter Test from Tral
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3.4.7 Sending a Critical Message to the Assigned Server

The Scapy tool is an efficient way to send customised messages and information from any node or
station to a designated service server. It offers great flexibility for users to create and transmit data
packets in different scenarios.

For example, if a user wants to send a message from Carl to CarServer, they can create an ICMP data
packet with the customised message "Msg: Carl is running with Speed 60 Km/hr" using the Scapy
Python APl within a Python script, as demonstrated in Figure 20. The user can then capture the data
packet using the Wireshark tool, as depicted in Figure 21.

Similarly, if a user wants to send a message from Tral to RailServer, they can use Scapy to create and
transmit a data packet with the customised message "Tral is running on Time", as shown in Figure 22.
The data packet can be captured using the Wireshark tool at RailServer, as illustrated in Figure 23.

Mappp YA ST F A Ca I
Y A AT Spos  scplY/idfPp 1 Helcome to Scapay
ET i 2 T P I Yer=sion 2.4.5
AYA=ATYY Y YYY A /P [ P |
Pl A p eS55ps YT 1 httpslffeithob, comfsoodew scogy
SPPPPS fa pPAA ALY I
ASAA el Al 1 Hawve fuml
pe S A sLAf a I
P pe AR | Craft packets like it iz ymer last
asooooopd S ApSPS S e peeY | day on earth.
SYLIAAEAAf Yy caa T o i — Lao—T=e
FiYa pY Ya |
=YPEYAF e al#Mp
sc  sccalY A PlupaspylPA A Ths
=pllPY/ A P Sps
CCRAcS
uzing IPython 2,3,.0
T mendl IPLsroe 100, Th0, 0, oL, asbe e, Tha, 0, g 7 LCAPG Hsg:L.ar‘l 1= running with opeed bBU Kmdhr )
rent. 1 packets,
e zend( IP(sre="192 1608 ,0, 201"  d=t="192_168,0, 204" ) A ICHP( )/ "Hag:Carl is running with Speed B0 Kmdhr")
et 1l packet

Figure 20: Scapy: Message Creation from Carl to CarServer

No. Time Source Destination Protacol Lengtt Info

5 3.8812370.. 192.168.0.201 192.168.0.204 ICHP 81 Echo (ping) reguest 1d=0x0000, seq=0/0, ttl=64 (reply in 6)
ol 63.8812535.. 192.168.6.204 192.168.0.201 ICMP 81 Echo (ping) reply id=exeeee, seq=8/@, ttl=64 (reguest in 5|

» Frame 5: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface s22-eth3, id @
» Ethernet II, Src: 00:00:00_00:00:02 (00:00:00:00:00:82), Dst: 90:060:00_00:00:08 (00:00:00:00:00:08)
+ Internet Protocel Version 4, Src: 192.168.0.201, Dst: 192.168.6.204
»_Internet Control Messace Protocol .
OO 00 06 G0 0O 60 G8 00 GG ©0 80 60 02 @8 0@ 45 60 E:
60 43 00 01 00 06 40 01 f7 d3 cO ad 00 c9 cO aB C-.--@

0@ cc 08 00 29 aB 0@ 0P 00 0O 4d 73 67 3a 43 61 sg:Ca

3 72 31 20 69 73 20 72 75 6e 6e 69 6e 67 20 77 69 ri is ru nning wi

0840 74 68 20 53 70 65 65 64 20 36 30 20 4b 6d 2f 68 th Speed 60 Km/h
30 72 r

Figure 21: Wireshark: Scapy Packet with a Message
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L YA EFEF TR 1
sYF/ A FfMSpes  soplY//Pp I Helcome to Scamy
aup appppaSCPY Fp sy¥i/C | Version 2,45
AYA=AYYYYYYYY/ /P e¥sis |
plIICY/ fp cShps /Y | https:/foithub, comdsecdewd/zcapy
SPPPP///a pRAFARCAAY |
ASAR eWlP/AAE | Have fuml
pidfhc sCiffa |
P/ M Cpe AR | bhat is dead may never diel
scoceopd / TpSPi fp pfY | — Python 2
sYAAFFIAEFNy caa o |
Ya pYYa
sYPsY// AT ald e
s¢  scoal Y/ PlypaapulP/#Y5s
splPY/ /7 F T PSps
cCaacs
ity Sl el
r send( IP(sre="192 168, 7,101" . d=t="192 168, 7, 104" }/ICHP( )/ "Mea: Tral iz running on Time")
Fent 1 packets,
¥ send(IP(sre="192, 168, 7,101" . dst="132, 168, 7, 104" }/ICHP( }/"Haq: Tral iz running on Time")
Gent 1 packets,

Figure 22: Scapy: Message Creation from Tral to RailServer

No. Time Source Destination Protocol Length Info

21 28.9356B1.. 192.168.7.101 192, 168.7. 104 69 Echo {ping) request 1d=0x08B0, $eq=9/8, Ltl=64 (reply in 22)
< 22 28.935726.. 192.168.7.164 192.168.7.1601 ICMP 69 Echo (ping) reply 1d=0x8000, seq=0/6, ttl=64 (request in 21)

» Frame 21: 69 bytes on wire (552 bits), 69 bytes captured (552 bits) on interface s55-eth3, id @

» Ethernet II, Src: 00:00:00_00:00:01 (00:00:00:00:00:01), Dst: 00:00:00_60:00:07 (00:00:00:00:00:07)
» Internet Protocol Version 4, Src: 192.168.7.101, Dst: 192.168.7.164
»_Internet Control Messace Protocol

000 00 0P 00 00 00 67 OO 00 00 PO 0O O1 OB 0O 45 00 . . =
00 37 00 O1 00 00 40 01 ea a7 cO a8 07 65 cO ad 7 @ e
07 68 08 00 ea 81 06 60 00 008 4d 73 67 3a 54 72 h Msg:Tr
61 31 20 69 73 20 72 75 6e 6e 69 6e 67 20 6f Ge a1l is ru nning on
20 54 69 6d 65 REATTY

Figure 23: Wireshark: Scapy Packet with a Message

3.4.8 Video Transmission Test

A detailed description is given in the Journal paper [21] to demonstrate the video streaming test from
one node to another node in Mininet-WiFi network emulator. Figure 24 depicts Trainl as the
streaming node while RailServer is the receiving node. The use of VLC player enables the
demonstration of video transmission between hosts in a railway and road coexistence scenario. This
test provides valuable insights into the functionality and performance of the system.
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\ rtp://:5004 - VLC media player -+ X

Media Playback Audio Video Subtitle Tools View Help Media Playback Audio Video Subtitle Tools View Help

P 19:3]1 41:17 | 00:04 00:00
P | || m u =|S(% o ] [P [ m ] 2304 [SS|% o el
Trainl: Streaming the Video From RailServer: Receiving the Video of
Trainl Trainl

Figure 24: Video Data Transmission and Reception
3.5 Implementation and tests for Coexistence Scenario 2

As a reminder, S1(5/6)4: Different Access Network and Different Core, Single Serving Technology,
Track Perpendicular to Road: In this considered scenario, the network parameters are similar to
scenario S1(5/6)1, i.e., railways and roads have dedicated radio access networks with dedicated cores,
but in this scenario railway tracks are perpendicular to roads.

Interface between
Switches and Ap

. . ; > >
S - - - J - -
¥ 55 : ‘ i-
e K7 Pt

2
ONOS SDN Controller Railway Service Server

Figure 25: S1(5/6)4 Different Access Network & Different Core, Track Perpendicular to Road
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3.5.1 Topology

A Mininet-WiFi network topology is generated using a Python script to allocate separate access
networks for trains and cars. Both domains have their own core networks, with railways having
perpendicular tracks to roads. Figure 25 illustrates the S1(5/6)4 scenario, where the ONOS SDN
controller programmatically manages the forwarding elements of the topology. The network switches
and access points are SDN-based devices that are managed and controlled through the OpenFlow
protocol.

The S1(5/6)4 scenario's network topology, created with Mininet-WiFi, is depicted in Figure 26. Hosts
Carl, Car2, and Car3 represent cars, while Tral, Tra2, and Tra3 represent trains. Access points ap1 and
ap2 are allocated for roads, with access point apl connected to switch S11 and access point ap2 to
switch S33. Switch S22 is connected to both S11 and S33. The road service server, "CarServer," is
connected to switch S22. Access points ap3 and ap4 are designated for railways, with access point ap3
connected to switch S44 and access point ap4 to switch S66. Switch S55 is connected to both S44 and
S66. The railway service server, "RailServer," is connected to switch S55. Nodes Carl and Tral are
configured to move, to simulate moving cars and trains in this scenario. Figure 27, generated by
Mininet-WiFi, displays the positions of nodes and access points before handover/moving.

CarServer
f= Car2 =
e ey iy Carl 21860202 ;
17247 u .. j apl : l ap2 Car3
L Devices 10 “ o "_ == " " ' = T
- & si1 522 533 2 1680.203
ol
ap3 544 55 566 apd ST
Tral I
(&) RailServer Tra3

Figure 26: S1(5/6)4 Different Access Network & Different Core, Track Perpendicular to Road: ONOS
Screenshot (Before Handover)
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Figure 27: S1(5/6)4 Hosts and Access Points: Mininet-WiFi Graph (Before Handover)

To validate the considered tool to emulate the S1(5/6)4 coexistence scenario, the test results related
to Handover/Moving, Reachability test, Data Traffic Differentiation test, UDP, TCP, Link Capacity,
Latency, Jitter and sending a message using Scapy application are presented in the Appendix Section
8.1 of this documentation.

3.6 Implementation and tests for Coexistence Scenario 3

As a reminder, S2(5/6)1: Different Access Network and Shared Core, Single Serving Technology,
Track Parallel to Road: In this scenario, railway and road domains have different radio access
networks, and both domains share backhaul and core network infrastructure. In this considered
scenario, railway tracks are perpendicular to roads.
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Interface between
SwitchesandAp --==--- SDN Interface

S
- -~ S— > ..

CarServer
(Car Service Server

‘/, ’,' A
' L gP Qi RailServer

(Railway Service Server)

x - .
ONOS SDN Controller

Figure 28: S2(5/6)1 Different Access Network & Shared Core, Track Parallel to Road

3.6.1 Topology

A Python script is used to create a network topology with Mininet-WiFi that separates trains and cars
into different access networks, while the core network is shared between the two domains. Railways
have parallel tracks to roads in this topology. Figure 28 illustrates the S2(5/6)1 scenario, where the
forwarding elements of the topology are programmatically managed by an ONOS SDN controller. The
network switches and access points are SDN-based devices that are operated and controlled via the
OpenFlow protocol.

The S2(5/6)1 scenario's network topology, created with Mininet-WiFi, is shown in Figure 29. Hosts
Carl, Car2, Car3, and Car4 represent cars, while Tral, Tra2, Tra3, and Tra4 represent trains. Access
points apl and ap2 are allocated for roads, while ap3 and ap4 are designated for railways. Access
points apl and ap3 are connected to network switch S11, and ap2 and ap4 are linked to switch S33.
Switch S22 is connected to both S11 and S33. The "RailServer" host is defined as the railways service
server, and the "CarServer" is defined as the road service server; both servers are connected to switch
S22. In this straightforward network topology, switch S22 serves as the core network switch, while
S11 and S33 are the edge switches. Nodes Carl and Tral are configured to move, to simulate moving
cars and trains in this scenario. Figure 30, generated by Mininet-WiFi, displays the positions of nodes
and access points before handover/moving.
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Figure 29: S2(5/6)1 Different Access Network & Shared Core, Track Parallel to Road Topology: ONOS
Screenshot
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Figure 30: S2(5/6)1 Hosts and Access Points: Mininet-WiFi Graph

In order to validate the considered tool for emulating the S2(5/6)1 coexistence scenario, the test
results related to Handover/Moving, Reachability test, Data Traffic Differentiation test, UDP, TCP, Link
Capacity, Latency, Jitter and sending a message using Scapy application are presented in the Appendix
Section 8.2 of this documentation.

3.7 Implementation and tests for Coexistence Scenario 4

As a reminder, $4(5/6)1: Shared Access Network and Shared Core, Single Serving Technology, Track
Parallel to Road: In this scenario, railway and road domains share the radio access network along with
backhaul and core network infrastructure. Railway tracks are parallel to roads.
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Figure 31: S4(5/6)1 Shared Access Network and Shared Core, Track Parallel to Road
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3.7.1 Topology

A Python script is used to generate a network topology with Mininet-WiFi. In this topology, railways
run parallel to roads and both domains share the access points and core. Figure 31 depicts the S4(5/6)1
scenario where an ONOS SDN controller programmatically manages the forwarding elements of the
topology. The network switches and access points are SDN-based devices and are operated and
controlled via the OpenFlow protocol.

Figure 32 shows the network topology for the S4(5/6)1 scenario, created with Mininet-WiFi. Cars are
represented by hosts Carl and Car2, while trains are represented by Tral and Tra2. Access points ap1
and ap2 are shared by both the domains. Access points ap1 is connected to network switch S11, while
ap2 is connected to switch S33. Switch S22 is connected to both S11 and S33. The "RailServer" host is
designated as the railways service server, and the "CarServer" is defined as the road service server,
both connected to switch S22. Nodes Carl and Tral are configured to move, simulating moving cars
and trains in this scenario. Figure 33, generated by Mininet-WiFi, displays the positions of nodes and
access points before moving/handover.
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Figure 32: S4(5/6)1 Shared Access Network and Shared Core, Single, Track Parallel to Road: ONOS
Screenshot (Before Handover)
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Figure 33: S4(5/6)1 Hosts and Access Points: Mininet-WiFi Graph (Before Handover)

In order to validate the considered tool for emulating the S4(5/6)1 coexistence scenario, the test
results related to Handover/Moving, Reachability test, Data Traffic Differentiation test, UDP, TCP, Link
Capacity, Latency, Jitter and sending a message using Scapy application are presented in the Appendix
Section 8.3 of this documentation.

3.8 Implementation and tests for Coexistence Scenario 5

As a reminder, S4(5/6)4: Shared Access Network and Shared Core, Single Serving Technology, Track
Perpendicular to Road: In this considered scenario, the network deployment infrastructures are
similar to those of scenario S4(5/6)1, but in this case railway tracks are kept perpendicular to roads.
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Figure 34: S4(5/6)4 Shared Access Network and Shared Core, Track Perpendicular to Road

3.8.1 Topology

A Mininet-WiFi Python script is used to create a network topology where railways run perpendicular
to roads, and the access points and core network are shared between the two domains. Figure 34
illustrates the S4(5/6)4 scenario, where an ONOS SDN controller manages the forwarding elements
programmatically. The network switches and access points are SDN-based devices that are operated
and controlled through the OpenFlow protocol.

The Mininet-WiFi generated network topology for the S4(5/6)4 scenario is presented in Figure 35.
Hosts Carl, Car2, Car3, Tral, Tra2 and Tra3 represent cars and trains, respectively. Access points apl
and ap2 are shared between the domains, with apl connected to network switch S11 and ap2
connected to switch S33. Switch S22 is linked to both S11 and S33. The "RailServer" host serves as the
railways service server, while the "CarServer" is defined as the road service server. Both servers are
connected to switch S22. Nodes Carl and Tral are configured to move, simulating the movement of
cars and trains in this scenario. Figure 36, generated by Mininet-WiFi, shows the nodes and access
points' positions before moving/handover.

CarServer

RailServer ;E'Tras;

Figure 35: S4(5/6)4 Shared Access Network and Shared Core, Track Perpendicular to Road: ONOS Screenshot
(Before Handover)
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Figure 36: S4(5/6)4 Hosts and Access Points: Mininet-WiFi Graph (Before Handover)

In order to validate the considered tool for emulating the S2(5/6)1 coexistence scenario, the test
results related to Handover/Moving, Reachability test, Data Traffic Differentiation test, UDP, TCP, Link
Capacity, Latency, Jitter and sending a message using Scapy application are presented in the Appendix
Section 8.4 of this documentation.

3.9 SUMO Integration

This section provides the information for the integration of SUMO with Mininet-WiFi, which provides
a graphical representation of scenarios where railways and roads coexist. Figure 37 illustrates the
steps involved in generating a SUMO map from OpenStreetMap and integrating it with Mininet-WiFi.
This integration allows for a visual representation of the scenarios, enhancing the understanding of

the system.
Edit The Vehicle ID
Look for the Following Files and Change the Save Changes
Vehicle ID with a number:
. L Move/copy all the executable file to "data”
1.0sm.passenger.trips.xml, 2. osm.rail trips.xml folder of SUMO application and save the
W 3.osm.rail_urban.trips.xml, 4.0sm.tram.trips.xml W changes using the command:
sudo make install

Map Generation

Use The Command
with Mininet-WiFi

python3 /usr/share/sumo/tools/osmWebWizard.py
Use the Command
duarouter --route-files
osm.passenger.trips.xml,

osm.rail_urban.trips.xml -n
osm.net.xml -0 sumomap.rou.xmil

Figure 37: Steps to Integrate SUMO with Mininet-WiFi Topology [21]

To create a visual representation of the coexistence of railways and roads, users can design a
customised map using Google Maps. To begin, download the desired Google Map file and run the
command "python3 /usr/share/sumo/tools/osmWebWizard.py" from the desired folder. This will
open the "OSM Web Wizard for SUMOQ" page, where users can select the "Generate Scenario" option
to choose the location of the map by entering the city or place name or GPS coordinates. For the
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purpose of demonstrating SUMO integration, we selected the location "Puente De Santiago", which
has parallel tracks and roads. We selected the desired map area using the "Select Area" option and
specified the parameters to generate vehicle traffic using the "Through Traffic Factor" parameter given
at the SUMO web page. This parameter allows users to define the number of vehicles that will depart
and arrive at the simulation boundary area. Figure 38 shows the selected map area and the chosen
parameters for generating the vehicle traffic. By creating such visual representations, we can better
understand the coexistence of railways and roads and their impact on traffic flow.
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Figure 39: Simulation: Puente de Santiago

To generate the network topology integrated with SUMO maps, a Python script is used. The entire
Python script “SUMO_Augl7.py” for network topology creation with SUMO map integration is
available at [29]. After executing the “SUMO_Augl7.py” script, a network emulation will be created
based on the SUMO map displayed in Figure 39. The location of the assigned access points and the
movement of Cars and Trains are shown in Figure 40, where the access points are labelled as ap1 to
apl7, Car2 is denoted as C2, and Train 77 is denoted as T77.
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Figure 40: Movement of Train and Cars on SUMO Map

As a Car or Train moves out of the coverage range of one access point and enters the coverage range
of another access point, it should automatically connect to the nearest access point. However, in some
cases, the automatic connection to the nearest access point may not be established. If such an issue
occurs, you can establish the connection manually by using the command: “<node name> iw dev
<node name>-wlan0 connect <SSID name>". Here, "<node name>" refers to the name of the node
(i.e., Car or Train) that needs to connect, and "<SSID name>" refers to the SSID name of the access
point it needs to connect to. For instance, if you want to connect a node named "Carl" to an access
point with the SSID "ap1", you can use the following command: “Carl iw dev Carl-wlan0 connect apl”.
This command will force the node to connect to the access point with the SSID "ap1" using the "wlan0"
interface.

3.10 Critical Analysis of limitations

This first emulation environment has enabled us to implement the various coexistence scenarios
identified, and to simulate the different railway applications. The implementation of these scenarios
and applications can be reused and exported to any other environment. However, some elements of
this platform could be improved to cover a wider range of scenarios:

e The radio access technology used in the network emulation is limited to Wi-Fi, and it does not
include any 5G radio access or 5G architectural elements.

e The handover process between the Access Points in the network is based on an ad-hoc
solution that relies on a self-built SDN (Software-Defined Networking) application at the
network level. This means that standard 5G-compliant handover mechanisms are not
supported.

e The implementation of new data processing architectures (Edge Computing) is not taken into
account in this first experimental environment. However, these architectures could prove to
be relevant to guarantee the smooth running of rail services.

e Additionally, the control of mobility and entities in the SUMO simulation tool is limited.
Specifically, it is not possible to determine the initial location or trajectories of vehicles, which
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makes it extremely challenging to generate iterations over a similar scenario/case under the
same conditions. However, manual configuration can be done, but it requires a lot of effort
and is prone to errors.

3.11 Conclusions

The emulator presented in this section has been used to implement the various coexistence scenarios
and rail applications identified. The validation tests carried out in sections 3.4 to 3.9 demonstrate that
users can develop different network topologies with nodes having moving capabilities and wireless
access points for railway and road coexistence scenarios. By replicating Cars and Trains in a virtual
space, moving hosts can simulate real-world scenarios. The developed ONOS SDN application can
differentiate data traffic based on VLAN tags and handle handover scenarios. SUMO is a visualisation
tool capable of representing the simulation of a scenario in a graphical way.

During the emulation of the Mininet-WiFi network with SUMO, there may be instances where nodes
do not automatically connect to the nearest Wi-Fi access point when they move from one access point
to another. This could be due to coverage range problems in the vehicle's path, which is determined
solely by SUMO integration since the SUMO map is extracted from OpenStreetMap. To simulate real-
world data traffic for railway and road coexistence scenarios, tools like iperf3, Scapy, and VLC player
are considered. Iperf3 is used to demonstrate standard data communication by sending and receiving
UDP and TCP packets between nodes, while Scapy is used to show messaging and critical data
communication. To demonstrate the video transmission from one network node to another, VLC
player is used. The MTR tool is used to measure network parameters such as latency, packet loss, and
jitter.

The tools used in this study have shown great potential for emulating scenarios of coexistence
between railway and road services, thereby providing a valuable framework for further exploration
and analysis of this complex environment. This environment forms a high-performance basis on which
bricks can be added to emulate a larger number of use cases. This is presented in the next section.
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4 IMPROVED DEMONSTRATION SANDBOX

In this section, we present an emulation environment, called Emu5GNet, extending the solution
proposed in the previous section. The objective of this platform was to offer an extended
simulation/emulation environment allowing the implementation of more complex and realistic
scenarios, including Edge Computing architectures, 5G E2E architectures in line with the work carried
out in the other work packages of the 5GRAIL project, and cross-border scenarios.

4.1 Requirements Revision

We identified the following criteria for the development of this Emu5GNet platform:

1. The platform should enable the implementation of realistic end-to-end 5G networks. This
implies the implementation of a 5G core network and the simulation/emulation of 5G access
networks;

2. The platform must allow the deployment of real railway applications and must therefore
include a platform offering the possibility to implement complex services (virtual platform);

3. The platform must allow the deployment of new data processing architectures that are
increasingly considered today: Edge Computing architectures. The platform must therefore
offer, in a realistic way, the possibility to deploy services at the edge of the network and to
move these services;

4. The platform must allow the implementation of complex network architectures, including the
possibility of managing the mobility of trains/vehicles on a small scale (inter-cell handover)
and large scale (inter-core handover);

5. This platform must reproduce the operation of the 5G architecture developed in the
framework of the 5GRAIL project. To do this, we have used the following document:
“SGRAIL_20230320_R_PU_D1.1_RV4.0_UIC_Test_Plan”.

4.2 Sandbox Design and Initial Implementation

To implement a complete 5G network, while taking into account the limitations of the existing
emulation platforms and the identified, we considered the integration of different tools:

e Mininet-WiFi - Containernet: Containernet [32]is a fork of Mininet-WiFi using Docker
containers as hosts. It allows the emulation of Wi-Fi networks (e.g., 802.11ac and 802.11p)
managed by an SDN controller in a flexible environment (containers). This platform can be
linked to the SUMO simulator [26], an open-source software for microscopic traffic simulation
(vehicles, trains, pedestrians, etc.) to implement complex scenarios;

e VIM-EMU: This platform [33] (SONATA project [34]) enables to locally prototype, deploy and
evaluate network services. VIM-EMU, as Containernet, is based on Docker containers to
enable quick and efficient deployment of services. This platform represents an efficient way
to deploy and manage NFV functions and Edge servers using and deploying real orchestrators
and services;
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UERANSIM: This tool [35] implements 5G User Equipment (UE) and 5G RAN (gNodeB) for both
SA and NSA architectures. It represents an interesting building block for the implementation
of a 5G communication architecture including the wireless segment. It is designed to support
a large number of simultaneous communications and to evolve with the advances of 5G;
Open5GS: This tool provides a C-language implementation for 5G Core [36]. It implements all
5G Core functions and can be used to deploy a complete 5G communication architecture. It is
designed to be interconnected with 5G RAN platforms including UERANSIM.

An integration process was required to enable the implementation of Emu5GNet:

e VIM-EMU and Containernet - Mininet-WiFi compatibility: The VIM-EMU data centres are
switches that have been modified to behave like edge servers (including CPU and storage
models). Containernet was not designed to handle such nodes and was unable to recognise
them. It was, therefore, necessary to integrate these two environments to enable the VIM-
EMU data centres to be used in the Containernet - Mininet-WiFi platform;

e Open5GS and UERANSIM integration in Mininet-WiFi: These tools have not been designed to
be integrated into a larger emulator. An integration and dockerisation work of the 5G Core
(Open5GS) and the 5G RAN (UERANSIM) was required to deploy end-to-end 5G
communications in Mininet-WiFi - Containernet;

e VIM-EMU improvement: VIM-EMU is designed to deploy network functions and edge services
in wired networks. The extension of VIM-EMU was necessary to allow the placement and
migration of edge services for wireless 5G networks. This work involved adding new
Application Programming Interfaces (APIs) to VIM-EMU and specifying new information about
deployed services/functions: CPU, memory, etc.
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Figure 41: Overview of the Emu5GNet Architecture

Emu5GNet architecture (cf. Figure 41) is designed to deploy different types of nodes/elements:
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e 5GUEandgNodeB:5G UEsand 5G gNodeB can be instantiated in Emu5GNet using UERANSIM.
These 5G UEs and gNB can be both mobile and fixed. UEs are implemented as specific Mininet-
WiFi hosts and gNB as specific docker containers;

e 5G Core: A core 5G network can be deployed in Emu5GNEt using Open5GS. This 5G Core,
implemented as a docker container, manages all the Emu5GNet UEs and gNodeB. In more
complex scenarios the deployment of different network cores could easily be addressed;

® Wi-Fi Access Points and hosts: With Mininet-WiFi, Wi-Fi access points and Wi-Fi hosts can
easily be deployed in Emu5GNet. These nodes correspond to existing Mininet-WiFi -
Containernet nodes and it was not necessary to modify them to enable their implementation;

e Edge Data Centres and Orchestrators: The deployment of edge data centres and
orchestrators, as Docker containers, is possible in Emu5GNet using VIM-EMU. The edge
orchestrator can manage the migration of edge services between the available servers (cf.
section 3.A). All nodes (Wi-Fi, 5G NR) can connect to these servers.

For Wi-Fi communications, the Emu5GNet architecture is managed by a central SDN controller
(compatibility with the first platform developed within the framework of this project). Wi-Fi hosts and
5G UEs can be integrated into the same Mininet host (multi-RATs device). Wi-Fi Access Points and
gNBs can be connected to the same edge server. Moreover, all the nodes are connected to the
Internet, increasing the number of deployable applications on these devices (e.g., streaming). Finally,
all devices can be mobile (SUMO) to implement enhanced scenarios.
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Figure 42: Emu5GNet Architecture in the 5GRAIL Framework

The Figure 42 presents a higher level view of the architecture implemented in the Emu5GNet platform.
In particular, it highlights the elements developed at the TrackSide, TrainSide and 5G network core. A
comparison with the architecture presented in the document
5GRAIL_20230320_R_PU_D1.1 _RV4.0_UIC_Test_Plan allowed us to confirm the compatibility of the
proposed architecture with the architecture considered more globally in the framework of the 5GRAIL
project. This allows us to validate the relevance of this platform.
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4.3 Edge Computing Implementation and Initial Evaluation

4.3.1 Edge Computing Implementation

The deployment of Edge Servers to enable the evaluation of current data processing architectures was
another requirement identified for the Emu5GNet platform. The implementation relies on the tools

integrated in the Emu5GNet platform (cf. Section 4.1): Mininet-WiFi, VIM-EMU, UERANSIM, Open5GS.
In particular, VIM-EMU was used to implement:

e Computing nodes: Integrating the VIM-EMU platform, Emu5GNet can be used to
deploy realistic computing servers. These servers are implemented as Docker
Containers that can integrate real railway services. These servers can be configured
to act both as 1) Cloud Computing Servers and 2) Edge Computing Servers. To do so,
latency, reliability and computing capabilities parameters can be updated at any point
in time;

e Computing nodes orchestrator: Managing a set of servers necessarily implies the
implementation of an orchestration solution. To do so, Emu5GNet includes scripts and
APIs that allow jointly managing all the deployed servers: start, stop, move a service,
etc. This allows users to quickly master the platform for the deployment of new
solutions to define optimised edge solutions for railway networks.

Figure 43 offers a basic view of the deployment of Edge and Cloud Servers and Edge Servers
orchestration.
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Figure 43: Overview of the Edge Computing Paradigm
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Based on this tool and the implementation of different features, Emu5GNet includes the possibility to

configure a broad set of parameters for Edge Computing Architecture’s Implementation and

Evaluation:

Edge nodes deployment: The idea of the platform is to allow the evaluation of an extensive
panel of Edge Computing architectures. Therefore, different types of nodes (mobile/fixed) can
be considered for the deployment of Edge servers. For example, edge nodes could be
deployed at the base station level as well as at the train level. Note that Cloud servers can also
be deployed;

Edge nodes capabilities: The deployed platform is designed to allow dynamic management of
all parameters related to the deployed edge servers: bandwidth allocated to a given server,
computing power, available storage space, etc. This allows the implementation of
heterogeneous processing architectures that can take into account the various possible
deployments: at the base station level, at the terminal level, in the core network, etc.

Edge nodes orchestration: Different orchestrators can be used concurrently to manage the
edge servers deployed in Emu5GNet. This can allow not only the definition of different
domains but also the implementation of concurrent strategies for the management of edge
servers and the resources available within these servers;

Network performance level: The network performance level, both wired and wireless, can
have an impact on the capacity of edge servers. Indeed, high latency could lead to the inability
of some edge servers to handle critical rail services. Emu5GNet allows setting the network
performance level through different approaches: 1) by deploying different radio access
networks (Wi-Fi or Cellular) and core networks (SDN or 5G) and 2) by directly setting the
performance level of the communication links: packet loss, latency, bandwidth, etc.

4.3.2 Initial Evaluation

To demonstrate the potential of the Emu5GNet platform, we considered a simple use case (cf. Figure

44): on a 3km? map, we considered a variable number of cars (random trip) and a dosen of trains

generating constant volumes of data (iperf command) and connected to 17 access points (5G + Wi-Fi

802.11n) uniformly distributed on the map. Three edge data centres are distributed on the map. Data

generated by vehicles is automatically transmitted to the nearest data centre. This scenario is

presented in more detail on the Emu5GNet Github Page [37].
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Figure 44: SUMO-based emulation

More precisely, we considered the following scenario: each train simultaneously launches a variable
number of services considered as critical applications (corresponding to iperf commands) and these
services link to an Edge or Cloud server (acting as an iperf server and that could host, more broadly,
any kind of server/application). The experiment lasted 60 seconds and a maximum of 135
simultaneous services were counted. The latency associated with the Cloud server is calculated based
on the average latency data measured for Google Cloud servers in France. Different articles, such as
[38], provide useful pieces of information regarding Cloud servers' latency measurement.

In this evaluation, we aimed to demonstrate that Emu5GNet can be used for: 1) Radio Access
Technologies comparison, 2) the definition of optimal architectures, 2) service placement and 3)
service migration. We also wanted to highlight the fact that the platform can provide different types
of results related to: 1) latency, 2) service placement failure rate or 3) percentage of services hosted
on one of the deployed edge servers.

Regarding RATs, we compared, for end devices, the level of performance of the two available RATs
(802.11n and 5G NR). To do so, we assessed the maximum throughput allowed by each of these
technologies and the associated latency (Round Trip Time) in the context of a data transmission from
the terminal equipment (trains, cars) to the nearest edge servers. The obtained results (cf. Figure 45)
shows that, both in terms of latency (RTT 10x lower on average) and maximum throughput (6x higher
on average), 5G NR technology performs better than 802.11n. This use case demonstrates that the
proposed environment easily enables the simultaneous evaluation of the performance of different
RATs.
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Figure 45: Evaluation for multi-RATS

Regarding Edge Computing, three different curves are presented in Figure 46 :

On the top left, based on the average latency times measured for Cloud servers, the idea was
to highlight the potential benefits of deploying Edge servers in terms of latency. Over the
duration of the experiment (60s), this curve compares the latency required to transmit data
from a train to a) a Cloud server and b) an Edge server. Such measurements could also be used
to define optimal, multi-tier Edge Computing architectures to optimise both the cost and
performance level offered to rail services;

On the top right, the idea was to demonstrate that the Emu5GNet platform can be relevant
for the definition of placement strategies for Edge services. We have therefore basically
compared two placement strategies, one uniform (services are distributed fairly by the
orchestrator among the different servers) and the other non-uniform (non-equitable
distribution). The curve displayed here allows us to see the percentage of services currently
running on one of the Edge servers compared to the total number of services currently
running in the infrastructure. Related to these placement strategies, many other curves could
be obtained: energy overhead generated by a non-optimal placement strategy, estimation of
the computational latency associated with each edge computing server, etc.
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e In the bottom centre, the idea was to demonstrate that the Emu5GNet platform can also be
used for the evaluation of Edge service migration policies. To do so, we compared two simple
approaches: a) a first approach in which services are moved to the nearest edge server based
on train mobility and b) a second approach in which deployed services are maintained end-
to-end on the first server attached to the train. We have defined a maximum communication
delay between the train and the edge server used (10s) and considered that the service
placement is a failure when the latency exceeds this limit. Indeed, for a critical service,
exceeding the defined maximum latency might not be acceptable. Thus, this curve allows us
to see that not migrating edge services leads necessarily to an increased latency and a higher
percentage of placement failures. Emu5GNet could therefore be used to define an optimal
service migration strategy. In this context, many parameters could be evaluated such as the
time needed for the migration of a service, the additional cost (computation, communication)
caused by the migration strategy, etc.
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Figure 46: Evaluation for Edge Computing

Thus, this simple experiment shows that the Emu5GNet platform can be used for a wide range of
implementations. Various RATs, server/service placement and migration strategies could be
implemented and compared with this platform. The results obtained could allow us to identify
appropriate strategies for specific applications and optimisation objectives: cost, performance,
energy, etc. The potential applications of Emu5GNet are therefore numerous.

4.4 Cross-border Scenario Implementation

The last element we wanted to implement in the Emu5GNet platform is the possibility to emulate
cross-border management and, in particular, roaming between two 5G cores, based on the E2E
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architecture defined in other WP (“5GRAIL_20230320 R_PU_D1.1_RV4.0_UIC_Test_Plan”). Indeed,
this feature seems to offer the possibility to simulate and validate a large panel of scenarios that could
be relevant in the 5GRAIL project.

Figure 47 presents a simplified vision for managing this cross-border scenario. Two 5G cores (Open5GS
- part of Emu5GNet) are deployed and each manages 5G gNBs (EURANSIM - part of Emu5GNet). In
each of the 5G cores the main functions are deployed (AUSF, UDM, AMF, SMS, UFP) and the UPF
function of each core is used to transmit data to the FRMCS TrackSide Gateway.
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Figure 47: Roaming Implementation in the 5GRAIL Framework

The solution chosen in the framework of this platform for the implementation of roaming is the home
routing roaming approach [39]. This approach has the advantage of being a well-known solution and
can be implemented in the considered 5G multicore environment. It offers a direct connection
between the train and the FRMCS application (via the UPF) via a traffic redirection to the home
network, which guarantees low end-to-end delays. The scenario chosen in the demonstration
presented in Figure 48 corresponds to a train moving at a border between France and Belgium (the
border is represented on the figure by a vertical red line). gNB base stations are deployed on both
sides of the border. They are managed by two separate network cores interconnected by a home
routing roaming approach.
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Figure 48: Implemented scenario with Emu5GNet and SUMO

Figure 49 shows the latency that was measured during the 60s experiment at the train level (NR-UE
interface). The deployed service corresponds to a video streaming service at the train level and
uploaded to the TrackSide server. We can see on this figure that the average transmission latency
between the UE and the server is about 10ms with a peak at the time of roaming: 1s. This
experimentation was carried out under specific conditions (network cores deployed on the same
hardware machine within virtual machines), but in a customisable environment that could include 1)
variable quality of service parameters that could evolve over time, thus reproducing the degradation
of the communication channel, and 2) the implementation of different roaming solutions beyond this
project implementation (home routing roaming). This environment could therefore be interesting for
the implementation of new roaming solutions.
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Figure 49: Latency evaluation in roaming scenario
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4.5 Conclusions

In this section, a new simulation/emulation platform was presented: Emu5GNet. This platform aims
at offering a more realistic simulation environment thanks to the implementation of 1) a 5G network
core (Open5GS), 2) a 5G RAN (UERANSIM) based on a virtualised environment (Docker Containers)
and 3) the implementation of the various FRMCS elements (TrainSide and TrackSide).

This platform also aims to cover a wider range of applications than the first environment implemented
and presented in Section 3 by including the possibility to simulate complex data processing
architectures (Edge Computing architectures with VIM-EMU) allowing the deployment of complex
applications with significant constraints (latency, bandwidth). It also allows the simulation of cross-
border scenarios thanks to the implementation of a roaming solution (home routing roaming). Finally,
different access technologies can be considered and emulated to interconnect UEs (trains, cars) to the
network.

The implemented evaluations allowed to demonstrate the relevance of this platform for the different
scenarios identified (cross-border, edge computing, multi-RATs, multi-UEs). They also demonstrated
that complex solutions for managing these scenarios could be implemented and evaluated in a
realistic environment using this open source and documented tool: edge servers deployment, RATs
selection, services migrations, etc. This tool therefore opens up the prospect of many applications.
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5 CROSS DOMAIN SERVICE IDEA AND DEMONSTRATION

5.1 Introduction

One specific assumption in the initial work on coexistence between roads and railways in WP6 was
that applications were specific to each domain. As a result, it was assumed that there were no
common services, even in coexistence scenarios.

As our work-package progressed, we discovered a specific case where having a common aspect for a
service could be of great interest. This case was related to a level-crossing scenario where the railway
tracks intersected with road lanes perpendicularly. During this scenario, when a train was approaching
the level crossing, the flow of cars on the perpendicularly traversing road lanes was stopped by a
movable barrier to ensure the safe passage of the train. However, dangerous situations frequently
arose when a car was stuck across the railway track in the level-crossing area. To mitigate this issue,
we proposed the implementation of an "emergency" messaging system that could communicate with
both a Car-Emergency service and a Train-Emergency system. In doing so, any potential collision
between the two could be avoided by notifying the approaching train of the situation. This approach
could significantly enhance the safety of both the railway and road users in such scenarios.

In the current railway signalling system (ERTMS [11]), a specific voice service, known as the Railway
Emergency Call (REC), has been enabled by the supporting telecommunication network (GSM-R [12]).
A revised version of the REC, called "enhanced Railway Emergency Call" (eREC), has also been
introduced [13]. This domain-specific communication service is primarily related to emergency
situations. The eREC is based on the Voice Group Call Service (VGCS) with additional pre-emption
features. When a user initiates an eREC call, the request is received by the serving GSM-R network,
which creates a group call (VGCS) to all entities in the same area, as well as to the area-
dispatcher/controller. The call is established even if no resources are initially available for it. The
network disconnects any other, lower-priority call to free resources and prioritises the eREC
communication. Once each endpoint accepts the eREC, the call is open for all participants, and
everyone can receive the contents of the call and participate in it. Strict rules ensure that only
participants with relevant information to the eREC can contribute to it. The eREC is an enhanced
version of the REC as it allows the definition of the REC area differently than the cell of the REC
initiator. This feature enhances safety in areas where cells overlap, minimizing the risk of potential
accidents.

In the roadway environment, messages are exchanged between vehicles and the roadside
infrastructure to enable communication. The European Telecommunications Standards Institute (ETSI)
has defined two main message types: Cooperative Awareness Message (CAM) and Decentralized
Environmental Notification Message (DENM) [14]. CAM messages are periodic messages used to
transmit vehicle status information such as location, speed, and identifier. DENM messages are
asynchronous messages used for the transmission of specific information, such as emergency
information in the vehicle environment. They can be used to indicate obstacles on the road, lane
changes, or sudden slowdowns. In addition to direct communications between vehicles (Vehicle-to-
Vehicle) that enable quick reception of DENM messages by terminals located in the same area,
roadside infrastructure is also used to transmit these messages to a wider area. This is achieved
through the GeoNet protocol and Geo-Multicasting, which determine the geographical area to which
the message should be transmitted based on its type and optimize its distribution to ensure that it is
received by all relevant entities.
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Aim of this experiment was to showcase the common emergency services for railways and roads
coexistence scenario through the use of a level crossing situation. The selected scenario involved
railway tracks perpendicular to roads, as illustrated in Figure 50. For this purpose, a Python script was
written in Mininet-WiFi. The network topology was created to emulate the level-crossing scenario
using the Mininet-WiFi emulator. Open Network Operating System (ONOS) SDN controller was used
to programmatically control the forwarding element of the network topology. Access points and
switches were SDN-based devices, which were controlled via the OpenFlow protocol. Rail Emergency
Server (RailEmer) and Car Emergency Server (CarEmer) were defined to handle the exchange of
emergency messages between the server and nodes. In contrast, RailServer and CarServer were
created to manage the normal message exchange between the nodes and the server. The network
topology allowed for shared access networks between railways and roads, with both entities having a
common core.

Figure 50: Cross-domain Emergency Service Scenario

The network topology developed to demonstrate and emulate the common emergency services for
railways and roads coexistence scenario is depicted in Figure 51. The nodes Tral, Tra2, Carl and Car2
are connected to access point Apl. Nodes Tra3 and Car3 are connected to access point Ap2. The access
points are further connected to switches S11 and S44, respectively. Switch S22 connects to the Rail
Emergency Server (RailEmer) and Car Emergency Server (CarEmer), while switch S33 connects to
RailServer and CarServer, which are responsible for managing the normal message exchange between
the nodes and the server.

Tral Tra2 RailEmer

Rail Tra3
_ - (Rail Emergency Server) ailServer
0 S an 200308208 N i (o
S $i1 $22 $33
S44
1
ot # B3 B— B B
1921400202 1920400203 g e =
CarEmer CarServer LRI RS
Carl Car2 (Car Emergency Server) Car3

Figure 51: Considered Scenario: Shared Access Network and Shared Core, Track Perpendicular to Road:
ONOS Screenshot Shared Emergency Service and Network-based Implementation

This proof of concept aims to demonstrate how a common emergency service can be implemented
and triggered in both railway and road domains. Although not a complete implementation of the eREC
mechanism, this work showcases how emergency services can be deployed in a coexisting scenario.
The "start-eREC" message can be initiated by cars or trains in the level crossing area. The
implementation of the emergency service is based on Software Defined Network (SDN) technology,
which allows for the identification and forwarding of emergency data packets to the respective
emergency servers designated for railways and roads. For example, if an emergency message is sent
from a train to the Rail Emergency Server, it should also be forwarded to the Road Emergency Server
to ensure that all relevant parties receive the message. Similarly, if an emergency message is sent from
a car to the Car Emergency Server, it should also be forwarded to the Rail Emergency Server.
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When a User Datagram Protocol (UDP) data packet arrives at an access point or switch, the device
checks its forwarding rules. If there are no rules for the source and destination IP pairs, the data packet
is sent to the SDN controller as an OpenFlow Packetln message. The developed SDN application checks
the destination port of the UDP data packet, and if it is 135, the packet is marked as an emergency
packet and tagged with VLAN ID 5. Port 135 is designated for receiving emergency data packets via
UDP. The SDN application duplicates the emergency packet and changes the destination IP address of
the duplicate packet. If a Car initiates the emergency message, the original packet is sent to the Car
Emergency Server, and the duplicate is sent to the Rail Emergency Server. If a Train initiates the
emergency message, the original packet is sent to the Rail Emergency Server, and the duplicate is sent
to the Car Emergency Server.

If the arrived UDP data packets have a destination port other than 135, they are marked as non-
emergency packets. Data packets sent to or from Train, Rail Server, and Rail Emergency Server are
assigned VLAN ID 3, while data packets sent to or from Car, Car Server, and Car Emergency Server are
assigned VLAN ID 4.

No. Time Source Destination Protocol Lengtt Info

[ 11 14.88520 192.168.0.201 192.168.0.205 70 135 —~ 135 Len=28

98 Destination unreachable

» Frame 11: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface s22-eth3, id ©

» Ethernet II, Src: 00:00:00_00:00:02 (00:00:00:00:00:02), Dst: 00:00:00_00:00:44 (00:00:00:00:00:44)
» Internet Protocol Version 4, Src: 192.168.0.201, Dst: 192.168.0.205

» User Datagram Protocol, [Src Port: 135, Dst Port: 135 |

00 60 00 00 00 44 00 00 00 00 60 02 08 00 45 00 D E

010 00 38 00 01 00 00 40 11 f7 cd c@ a8 00 c9 co a8 8 @

020 00 cd 00 87 00 87 00 24 Se 66 45 6d 65 72 67 65 $ AfEmerge

0360 6e 63 79 20 4d 73 67 3a 45 6e 67 69 6e 65 20 46 ncy Msg: Engine F
10 61 69 6¢c 75 65 72 ailuer

Emergency Message

Figure 52: Emergency Data Packet from Carl to Car Emergency Server: Data Packet Captured at CarEmer

No. Time Source Destination Protocol Lengtt Info

5 5.5748446.. 00:00:00_00:00:07 00:00:00_00:00:55 54 Bogus IPv4 version (0, must be 4)

» Frame 5: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface s22-eth4, id ©
» Ethernet II, Src: 00:00:00_00:00:07 (00:00:00:00:00:07), Dst: 00:00:00_00:00:55 (00:00:00:00:00:55)

» [862.1Q Vvirtual LAN, PRI: @, DEI: 0, ID: 5 VLAN
»

0000 00 60 O OO OO 55 00 O 00 60 00 07 81 00 00 05 U

0160 08 00 00 87 00 87 00 24 Se 66 45 6d 65 72 67 65 . $ AfEmerge
20 6e 63 79 20 4d 73 67 3a 45 6e 67 69 6e 65 20 46 |ncy Msg: Engine F
0 61 69 6¢c 75 65 72 ailuer Emergency Message

Figure 53: Duplicate Emergency Data Packet Sent to Rail Emergency Server: Data Packet Captured at
RailEmer

Figure 52 shows the emergency data packet captured at Car Emergency Server (CarEmer) and Figure
53 shows the emergency data packet captured at Rail Emergency Server using Wireshark tool. When
an emergency message is sent from Carl to Car Emergency Server, the developed SDN application
differentiate the data packet and mark this data packet as “Emergency Data Packet” and tagged this
data packet with VLAN 5. After duplicating it, it sent the original data packet to Car Emergency Server
and duplicated emergency data packet to Rail Emergency Server (RailEmer), as shown in Figure 53.
Similarly, when an emergency message is sent from Tral to Rail Emergency Server (RailEmer), an SDN
application is able to send this message to Rail Emergency Server as well as Car Emergency Server, as
shown in Figure 54 and Figure 55.
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No. Time Source Destination Protocol Lengtt Info

5 — 135 Len=28

1 unreachable (Port ur

39 54.878805.. 00:00:00_00:00:55 00:00:00_00:00:01 ARP 42 Who has 192.168.7.101? Tell 192.168.7.105
40 54.880399.. 00:00:00_00:00:01 00:00:00_00:00:55 ARP 42 192.168.7.101 is at 00:00:00:00:00:01

Frame 35: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface s22-eth4, id 0
Ethernet II, Src: 00:00:00_00:00:01 (00:00:00:00:00:01), Dst: 00:00:00_00:00:55 (00:00:00:00:00:55)
Internet Protocol Version 4, Src: 192.168.7.101, Dst: 192.168.7.105

User Datagram Protocol,[Src Port: 135, Dst Port: 135 |

Data (28 bytes)

00 00 00 00 00 55 00 00 ©0 00 00 01 08 00 45 00 u E

00 38 00 01 00 00 40 11 ea 95 cO® a8 07 65 cO a8 8. .. .@ e

07 69 00 87 00 87 00 24 51 2e 45 6d 65 72 67 65 |-i $ Q.Emerge
0930 6e 63 79 20 4d 73 67 3a 45 6e 67 69 6e 65 20 46 |ncy Msg: Engine F
040 61 69 6¢ 75 65 72 ailuer Emeregency Message

Figure 54: Emergency Data Packet from Tral to Rail Emergency Server: Data Packet Captured at RailEmer

No. Time Source Destination Protocol Lengtt Info

19 24.994861.. 00:00:00_00:00:08 00:00:00_00:00:44 54 Bogus IPv4 version (0, must be 4)

» Frame 19: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface s22-eth3, id ©
» Ethernet II, Src: 00:00:00_00:00:08 (00:00:00:00:00:08), Dst: 00:00:00_00:00:44 (00:00:00:00:00:44)
» |802.1Q Virtual LAN, PRI: O, DEI: @, ID: 5| VLAN
»

Internet Protocol Version 4
0000 00 00 60 0O 00 44 00 00 0O 0O 60 08 81 00 00 05 D
08 00 00 87 00 87 00 24 51 2e 45 6d 65 72 67 65 $ Q.Emerge
6e 63 79 20 4d 73 67 3a 45 6e 67 69 6e 65 20 46 ncy Msg: Engine F
61 69 6¢c 75 65 72 ailuer

Emergency Message

Figure 55: Duplicate Emergency Data Packet Sent to Car Emergency Server: Data Packet Captured at CarEmer

In conclusion, the SDN-based application developed in this project successfully demonstrated the
capability to send emergency messages to both the Rail Emergency Server (RailEmer) and Car
Emergency Server (CarEmer) in a scenario of railways and roads coexistence. This proof of concept
shows that cross-domain emergency services can be implemented to serve both domains.

5.2 Shared Emergency Service and Application-based Implementation

Following this implementation at the network level, our idea was to use this approach to propose a
solution at the application level: 1) integrating this network-based solution to optimise latency, 2)
compatible with existing solutions both in the literature and in industry, 3) capable of guaranteeing
the proper functioning of very low latency applications, and 4) relying on the data processing
architecture deployed in the second emulator platform designed.

To do so, we considered the use of MQTT (Message Queue Telemetry Transport) [15], one of the most
widely used solutions at the application layer. It has many advantages, including lightness, portability
and reliability. It is based on an asynchronous Publish-Subscribe (Pub/Sub) pattern. In this model,
messages are transmitted by senders (publishers) to a broker (car/train server potentially) that
manages the delivery of these messages to recipients (subscribers).

To be able to simultaneously manage a large number of devices (trains/cars) and guarantee low
latency communications, the distribution of the MQTT broker (car/train server) has been proposed in
numerous studies, both academic and industrial [16, 17], especially using an Edge Computing
architecture. In this case, a cluster of MQTT brokers is deployed on different physical machines and
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interconnected by the network. Each broker manages a given number of devices (trains/cars),
generally located in the same geographical area.

SDN-based MQTT clusters have been proposed in different studies [18, 19]. This has demonstrated
the relevance of this approach both in terms of the network's ability to respond to cluster evolutions
(failures, integration of a new broker, etc.), and in terms of performance (latency, bandwidth usage).
However, there are several limitations to this work today: 1) the existing solutions aim to replace the
MQTT architecture rather than to improve it, which makes them incompatible with the solutions
deployed today on a large scale, 2) the implemented mechanisms for message distribution to the
various brokers imply delays that are incompatible with low-latency applications, and 3) the studies
focus on the distribution of messages between the network's brokers, and not to the end clients
(subscribers), which is actually the objective of MQTT.

That is why during this phase we designed a new SDN-based distributed MQTT broker: SoD-MQTT
based on the network layer solution that we proposed earlier. It aimed at demonstrating the potential
benefits of such an approach.

5.2.1 SOD-MQTT Architecture

The SoD-MQTT architecture is shown in Figure 56. Compared to SDN-based architectures for MQTT
clusters, the proposed solution has the following characteristics:

e The idea of Local and Remote MQTT Broker: Because each MQTT Broker (car/train server)
manages a specific geographical area, the Local Broker is the broker managing the area where
a device (train/car) is located. Remote brokers correspond to all other brokers in the cluster
(other servers). This classification allows an efficient management of the devices subscription
(cf. Section 5.2.2) and can also allow a message to be broadcast to a specific area/to a specific
number of brokers, an idea that has not been considered yet (cf. Section 3.C). It can be noted
that communications are possible between SDN switches depending on different geographical
areas;

e The standardization of exchanges between MQTT brokers and SDN controllers: The
implementation of a REST APl (REpresentational State Transfer) is proposed to allow the
integration of the SDN technology in the existing MQTT architecture. This API can be used for
the management of brokers (addition, deletion), subscribers (addition, deletion), and the
publication of messages. It represents a global interface between MQTT Brokers and SDN
Controller. This could allow us to integrate this approach in currently deployed solutions
without impacting the MQTT protocol. It can be noted that this approach could also be applied
to existing studies;

e The use of OpenFlow Group Tables at the SDN switch level for data dissemination within
MQTT clusters: These Group Tables [20] are a feature of the OpenFlow protocol allowing
multicast management in an SDN system. We propose to use them to calculate optimal
communication paths to MQTT clients (publishers/subscribers) and thus optimise the
distribution of information but also to manage communication within the MQTT cluster. The
idea is to be able to simultaneously transmit data to different MQTT brokers, without using a
Root Broker. This is an important evolution compared to existing solutions.
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SoD-MQTT, from an architectural point of view, presents three main evolutions: 1) the possibility to
identify different types of MQTT brokers, 2) the standardization of exchanges between brokers and
controllers, and 3) a complete use of OpenFlow Group Tables. The implementation of the proposed
system is described in detail in Sections 0 and 5.2.2.

S Legend
7 SDN Controller warr MQTT Broker Access Point

e SDN Switch g OF Group Table

Figure 56: High-Level View of SoD-MQTT
SOD-MQTT Brokers Management (Inter-Edge Servers Management)

In existing SDN-based Distributed MQTT architectures, cluster management relies on sequential
distribution to the different brokers. A Root Broker that receives a message from a publisher will
transmit it to a set of neighbouring brokers that will then transmit it to their neighbours. With SoD-
MQTT, a different process is used. It is based on the OpenFlow Group Tables.

When a new broker is added to an existing cluster, the procedure is shown below (cf. Figure 57):

e The broker (or cluster operator) asks the SDN controller via the Rest API to be added to a given
cluster. If there are multiple clusters, each cluster is identified by a unique ID. The broker is
also identified by an ID that will allow it to be associated with a given geographical area;

e The SDN controller calculates the optimal path within the core network to reach this broker.
This path aims to: a) minimize latency and b) limit the number of flow rules deployed at the
SDN switch level;

e The controller sends the corresponding flow rules (entries) to the SDN switches. These rules
are integrated into the group tables and must allow data to be transmitted simultaneously to
the various brokers in a cluster (multicast);

e The controller adds the newly arrived broker to its database, indicating the cluster it is being
attached to. This will allow us to identify it later.
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Note that this simple way of adding an MQTT broker to an existing cluster can be applied to different
scenarios. In the case where:

e The cluster does not exist: the controller starts by creating a new cluster in its database and
associates it with this broker. A new rule/entry is also created in the Group Table of the
concerned SDN Switches to allow the integration of new brokers to this cluster in the future;

e A MAQTT clusteris organized into a set of sub-clusters: The objective here may be to implement
local/geographic services and to optimise the use of the available bandwidth, avoiding the
transmission of messages to all the members of an MQTT cluster. In this case, the SDN
controller stores not only a list of MQTT clusters and brokers but also a list of sub-clusters.
The sub-clusters are managed in the same way as the clusters. The procedure for transmitting
a message to a given cluster or subcluster is defined in section 5.2.2.

MQTT SDN SDN
Broker Switch Controller

1. Ask for IRegistration

v

\ | 2. Computes
J | Optimal Path
3. Update Group Table |,/ )

ACK >
4, Stores
Broker Info
ACK —

Figure 57: Exchanges between Brokers and Controllers in SoD-MQTT

A

The MQTT broker registration process with SoD-MQTT, therefore, ensures that data can be
transmitted simultaneously to all the brokers associated with a given publication. This aims to
minimise the information transmission delays in the network. When a Broker wants to be de-
registered, it simply sends a request to the SDN controller. The flow rules corresponding to this Broker
will be removed from the Group Tables of the SDN switches and the controller will delete it from its
database. If this broker was the only broker of a given cluster, this cluster will also be deleted.

5.2.2 MQTT messages management in SoD-MQTT

The MQTT messages can be classified into two main types: messages related to the activities of
publishers (nodes emitting messages) and those related to the activity of subscribers (nodes receiving
messages).

To distinguish these types of messages and to offer a more fine-grained management protocol
integrating, for example, the idea of sub-clusters (cf. Section 5.2.1), the proposed solution is based on
a simple idea: select a specific TCP port when the message is transmitted by an MQTT client
(publisher/subscriber). This approach offers an important advantage: it is compatible both with the
SDN technology, which enables traffic differentiation based on the TCP port indicated in the
transmitted packet, and with existing MQTT solutions, which enable the TCP ports to be defined at
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both the MQTT broker and the client level. This approach can therefore be integrated into the MQTT
architectures currently deployed without requiring major changes.

In our system, a reserved TCP port SUB_PORT is intended for actions related to subscribers: new
subscription, Keep-Alive Message, etc. The objective is that the messages sent by this subscriber are
only transmitted to the MQTT Broker managing the geographical area in which this subscriber is
located. This avoids the transmission of these messages to all the brokers in the cluster and thus limits
unnecessary message transmission. This point is not considered in existing works and represents an
interesting advance in terms of optimization of the network performance. If the message sent to the
MQTT broker is a new subscription request, it is sent to the SDN controller to deploy the
communication paths used to reach the loT device. Group Tables are attached to each topic and each
broker and are used to manage the distribution of messages within the network, similar to cluster
management (cf. Section 0).

Topics (and therefore published messages) can also be attached to specific TCP ports. In a basic case,
considered in the literature, a message sent by a publisher is transmitted to all the brokers on the
network. In this case, the port PUB_PORT_0 is used and seems sufficient if we do not want to consider
other scenarios. Therefore, two ports are defined: SUB_PORT and PUB_PORT_0. In more complex
scenarios, we can consider that messages must be broadcast in a given geographical area (sub-cluster).
Considering X sub-clusters, the PUB_PORT_{1-X} ports can be set. When the message is generated by
a publisher, depending on the topic, it will be attached to a port according to a predefined list aimed
at providing access to the various sub-clusters.

Thus, three main scenarios can be identified:

e Transmission of the message to the Broker managing the geographical area in which the
device (car/train) is located: This corresponds to most of the actions related to the subscriber
(Local Broker): only the closest MQTT broker is concerned, so the message is not duplicated.
This can also correspond to a scenario in which a sub-cluster consists of only one broker. In
this case, the message sent by the publisher is only transmitted to a single broker;

e Transmission of the message to a set N of Brokers (N lower than the total number of brokers):
This is the classic case of transmission of a message from a publisher to an MQTT subcluster.
The message will then be transmitted to all the subscribers concerned;

e Transmission of the message to all brokers: this is the classic case when a message is sent by
a publisher. This message is transmitted to the whole MQTT cluster to be then broadcast to
interested subscribers. This can also correspond to an unusual case where an MQTT client
would like to subscribe to a topic that is not yet registered: the local broker transmits the
information to all the brokers in the cluster so that they can record this new topic (potential
new service at a given point in time).

SoD-MQTT, besides being based on a new architecture, allows a high level of flexibility for message
distribution.
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5.2.3 Evaluation

In this section, we aim to evaluate the performance level of SoD-MQTT. Besides enabling integration
into currently widely deployed MQTT architectures, SoD-MQTT defines new message management
mechanisms. Therefore, in this section, we seek to verify that:

e Real-time message transmission within the MQTT cluster, enabled by SoD-MQTT, can be
beneficial;

e The mechanisms proposed in SoD-MQTT for the management of MQTT clients allow to
optimise the network management.

To do so, within Emu5GNet (cf. Section 3), we used:

® Mininet-WiFi: a Mininet-based emulator of software-defined networks for wireless
environments [4]. This tool is commonly used for the evaluation of new
mechanisms/architectures related to SDN technology. This solution has the advantage of
allowing the deployment of actual services and the parameterisation of the network
performance level;

e Eclipse Mosquitto: This is an open-source message broker that implements multiple MQTT
versions (v5.0 in our case) and which offers the advantage of being lightweight and deployable
on devices with limited capabilities. In our implementation Mosquitto is complemented by
Paho MQTT, also developed by Eclipse, which is a Python library allowing to easily connect an
MQTT client to a broker;

e Iperf3: This is an open-source tool that can be used to collect latency and bandwidth statistics
for both TCP and UDP. So, we integrated it into our architecture.

Beyond the tools used, other elements seem to us also notable in the evaluation environment that we
have put in place:

e An emulated 5G Core using Emu5GNet and a performance level corresponding to 5G
Networks;

e A realistic number of brokers within the MQTT cluster, based on existing work, we therefore
assumed a variable number of clusters between 3 and 12;

e A large number of data to provide relevant results (10,000 messages emitted).

A last important element is the choice of the solutions that we have selected and compared to SoD-
MQTT within the framework of this experimentation. There are two solutions:

e HbH: a solution corresponding to the basic solutions described in the literature in which
messages are transmitted hop by hop within the MQTT cluster (broker after broker);

e Tree: a more advanced solution in which the transmission of data within the cluster is
organised in a tree (each broker transmits messages to two clusters).

In this first evaluation, we tried to determine the amount of time required to transmit a piece of
information to all the brokers of a cluster in the case of the SoD-MQTT, Tree, and HbH approaches.
We simply measured the time elapsed between a) the moment when a message is sent by an MQTT
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Client (publisher) and b) the moment when this same message is received by all the brokers of a
cluster).

What can be seen in Figure 58 is that the proposed approach allows significant gains ranging from
200% in the case of a cluster composed of 3 nodes to nearly 400% in the case of a cluster composed
of 12 nodes. This is due to the use of multicast and OpenFlow group tables which had not been
considered until now. This approach seems relevant to reduce the broadcast latency within an MQTT
cluster as it guarantees a constant broadcast time.

Such a process of parallel sending of messages to the different brokers of a cluster could be
problematic if some actions would imply synchronisation between the different brokers. In this case,
a sequential distribution could seem relevant. However, in the deployed framework, the need for
synchronisation does not exist when the messages are multicast to all the brokers. The only objective
is to distribute the messages to all the subscribers of the network. Therefore, this solution seems only
beneficial in the considered case and could be applied to the different solutions defined in the

literature.
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Figure 58: SoD-MQTT Evaluation

In the second evaluation, we aimed to evaluate the overhead associated with the different
frameworks considered: HbH, Tree, and SoD-MQTT. In other words, for a message generated by an
MQTT client and destined for all MQTT brokers, we wanted to determine the number of messages
that would pass through the network. To do this we considered a base of 100 messages sent and tried
to estimate how many messages would be regenerated/retransmitted by an MQTT broker.

As can be seen in Figure 59, with the SoD-MQTT approach, messages are directly broadcast to all
MQTT brokers. Therefore, we can consider that no message is recreated/reissued. In contrast, in the
HbH and Tree approaches, message transmissions are sequential and the number of messages passing
through the network is therefore multiplied (2 to 12 times). The induced overload for the network is
therefore important. Similarly, the overhead for the MQTT brokers is also existing since they may have
to participate in the retransmission of messages. The overload is therefore both in terms of network
capacity and computing capacity.

We can also add that SoD-MQTT also integrates the possibility of transmitting a topic only to a subset
of the cluster. This solution could be applied to other existing frameworks to improve their
performance level. Moreover, in the study carried out here only published messages are considered.
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However, messages related to subscriptions (Keep Alive, for example) could have an important impact
in terms of load when they are transmitted to all the brokers of an MQTT cluster. A problem eliminated
by SoD-MQTT which manages the local distribution of these messages.

5.3 Conclusions

In this section, we have proposed a new emergency service that could be used to manage the
coexistence of trains and cars. This type of service could be particularly relevant at level crossings if a
problem is encountered. It could allow critical information to be transmitted simultaneously to rail
and road services.

For the implementation of this emergency service, we considered two different implementations. The
first one is based on a network-level implementation and on the use of SDN technology, particularly
highlighted in Section 3 of this report. The development of a VLAN tagging mechanism could be used,
as it has been demonstrated, to guarantee the joint dissemination of information to both servers
(trains/car)

The second proposed solution is based on the implementation of a solution at the application layer.
The objective of this design is threefold: 1) to rely on the proposed solution at the network level to
optimise the use of available network resources, 2) to provide a solution that can be integrated into
existing architectures currently used in research and industry, and 3) to optimise these solutions
through the implementation of new architectures. As it has been demonstrated through
experimentation, this solution, based on the MQTT protocol, meets the different objectives and could
therefore be a relevant option.

In conclusion, the approaches proposed in this section appear to be a relevant way to implement new
emergency services for both the rail and road environments.

6 CONCLUSIONS

The Future Railway Mobile Communication System (FRMCS) will be the 5G worldwide standard for
railway operational communications, conforming to European regulation as well as responding to the
needs and obligations of rail organisations outside of Europe. The work on functional & technical
requirements, specification & standardisation in 3GPP as well as regarding harmonised spectrum
solutions is currently led by UIC, in cooperation with the whole railway sector. In this context, the
5GRAIL project aims at verifying the first set of FRMCS specifications and standards (FRMCS V1) by
developing and testing prototypes of the FRMCS ecosystem. The validation of the latest available
railway-relevant 5G specifications will be achieved through trials covering significant portions of
railway operational communication requirements and including the core technological innovations for
rail expected from 5G release 16 and pre-release 17.

In this context, the main objective of WP6 is the evaluation of the coexistence of rail and road
automotive communication use cases. The possible synergies allowed by FRMCS between both
vertical industries based on a situation implying common use cases will be evaluated. The objective of
deliverable D6.1 was the identification and definition of possible rail and road coexistence scenarios.
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In continuity, the aim of this deliverable D6.2 was to implement some of the scenarios identified in
D6.1 in a realistic network emulator framework. The different steps towards the implementation of a
complete emulator are presented in this deliverable. This is divided into two steps. First, an
identification of all the requirements that must be taken into account by the emulator. Then, the
implementation of a first emulator which allowed to validate and evaluate all the scenarios selected
from D6.1. Thereafter, the definition of a second emulator, which is more complex, allows the
implementation of a large set of scenarios, including multi-radio access technologies, edge computing,
and roaming. The evaluations presented for these two emulators demonstrate their relevance and
their potential. Finally, an emergency service (network-level implementation and application-level
implementation) aiming at ensuring the coexistence of trains and cars at level crossings has also been
presented in this deliverable.

The simulation/emulation environments implemented in this WP6, and more specifically in task 6.2,
open the door to many new opportunities. Indeed, they could be used in the context of many
applications such as 1) the definition of optimal Edge architectures by analyzing the resources required
to run given applications in a given traffic context, 2) the analysis and comparison of different solutions
for cross-border scenario management enabled by the implementation of different 5G cores and their
interconnection and 3) the definition and validation of new services such as the emergency service
presented in this document.
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8 APPENDICES

In this section can be found the test results for the scenario $1(5/6)4, S2(5/6)1, S4(5/6)1 and S4(5/6)4
and are related to Section 3.

8.1 Implementation and tests for Coexistence Scenario 2

S1(5/6)4: Different Access Network and Different Core, Single Serving Technology, Track
Perpendicular to Road: In this considered scenario, the network parameters are similar to scenario
S1(5/6)1, i.e., railways and roads have dedicated radio access networks with dedicated cores, but in
this scenario, railway tracks are perpendicular to roads.

8.1.1 Handover/Moving

To analyse handover/mobility, the nodes Carl and Tral were configured with mobility capability. After
a 60-second delay, Carl initiated movement towards access point ap2, Tral started moving towards
access point ap4. While in motion, Carl pinged Car2, and Tral pinged Tra2. The results of the ping
test, as shown in Figure Al, indicate that when Carl reached the edge of access point ap1 and entered
the coverage range of access point ap2, it successfully switched its connection from apl to ap3.
Similarly, when Tral entered the coverage range of access point ap4, it successfully switched its
connection from ap3 to ap4.

B4 bytes from 192,168,0,202; icmp_seq=15 ttl=B4 time=7,8E mz G4 bytes from 192,168.7.102: icmp_seq=2 ttl=G64 time=4,76 ms
B4 bytes from 192,168.0,2021 icmp_seg=16 ttl=E4 time=7.BE8 mz B4 bytes from 192,168.7.102: icmp_seq=3 ttl=G64 time=4,40 ms
B4 bytes from 192,168,0,202; icmp_seq=17 ttl=64 time=7,82 mz 64 bytes from 192,168.7.102: icmp_szeg=4 ttl=B4 time=4.47 m=z
B4 bytes from 192,168.0,202% icmp_seg=18 ttl=64 time=7.72 mz B4 bytes from 192,168.7.102: icmp_seq=0 ttl=B4 time=4,57 ms
B4 bytes from 192,168,0,2023 icmp_seq=19 ttl=64 time=7.68 mz 64 bytes from 192,168.7.102: icmp_zeq=6 ttl=E4 time=4.51 n=z
B4 bytes from 192,168,0,202; icmp_seq=20 ttl=64 time=8,58 mz B4 bytes from 192,168.7.102: icmp_seq=7 ttl=Gd4 time=0,E0 ms
B4 bytes from 192,168,0,2021 icmp_seq=21 ttl=F4 time=B8,86 mz 64 bytes from 192,168.7.102: icmp_zeg=8 ttl=64 time=7.79 mz
64 butes from 192,168.0,202; icmp_seg=22 ttl=64 time=7.81 mz B4 bytes from 192,168.7.102¢ icmp_seq=9 ttl=Ed time=5,04 ms
E4 bytes from 192,168,0,202: icmp_seq=23 ttl=G4 time=B8,23 mz B4 bytes from 192,168.7.102: icmp_seg=10 ttl=64 time=4,63 m=z
B4 bytes from 192,168,0,202: icmp_seq=24 ttl=64 time=7.82 mz 64 bytes from 192,1B8.7.102% icmp_seq=11 ttl=64 time=4,34 m=
B4 bytes from 192,168.0,202; icmp_seq=20 ttl=64 time=8,47 mz 64 bytes from 192,168.7.102; icmp_seq=12 ttl=64 time=4,62 ms
E4 bytes from 192,168,0,202: icmp_seq=2E ttl=f4 time=9.BE mz Y e 97 152 02+ jrcup =eqs =C4 time=H B2
B4 bytes from 192,168,0,202;7 icmp_seq=27 ttl=64 time=7,90 mz fFrom 192,168,7.101 icmp_seq=14 Destination Host Unreachable
B4 bytes from 192,168.0,202% icmp_seq=28 ttl=64 time=9.51 mz From 192,168.7.101 icmp_seq=15 Destination Host Unreachable
B4 bytes from 192,168,0,202: icmp_seq=29 ttl=f4 time=5,68 mz [From 192,168,7.101 icmp_seq=16 Destination Host Unreachable
B4 bytes from 192,168,0,202: icmp_seq=30 ttl=f4 time=G,03 mz [From 192,168,7.101 icrmp_seq=17 Destination Host Unreachable
E4 bytes from 192,168.0,202: icmp_zeq=31 ttl=f4 time=7.4E6 mz  fFrom 152,168,7,101 icmp_seq=18 Destination Host Unreachable
Bd butes fron 192 1B 0 202 Gcpo seq=22 tE1-Bd timez9 21 o rom 192,168, 7,101 icmp_seq=19 Destination Host Unreachable
“rom 192,168.0,201 icmp_seq=23 Destination Host Unreachable rom 132,168,7,101 icmp_seq=20 Destination Host Unreachable
Srom 192,168,0,201 icmp_seq=34 Desztination Host Unreachable rom 192,168,7.,101 icmp_zeq=21 Destination Host Unreachable
“rom 192,168.0,201 icmp_zeq=25 Destination Host Unreachable et B B R T O A g aseE i Rl e nakions Hest ol s sebab Le
From 192,1628,0,201 icmp_seq=36 Destination Host Unreachable bytes from 192,168.7,102: icmp_seq=23 tt1=64) £ime=2220 m= |
From 192,168,0,201 icmp_seq=37 Destination Host Unreachable B4 bytes from 192,168.7,102; icmp_seq=26 ttl=64 Time=o,0F mz
Cron 192 168 0 20 epn sea=28 Te=tination H breachable Ed bytes from 192,168.7.102: icmp_seq=27 ttl=E64 time=3.539 m=
B4 bytes from 192,168.0,202: icmp_seq=33 ttl=f4itime=1164 B4 bytes from 192,168,7,102; icmp_seq=28 ttl=64 time=4,04 mz
E4 buytes from 192,168,0,202: icmp_seq=4l ttl=B4 time=d, B4 bytes from 192,168.7,.1021 icmp_geq=23 ttl=E4 time=4,79 m=
B4 bytes from 192,168.0,202¢ icnp_seq=42 ttl=64 time=7,30 mz 64 bytes from 192,168.7.102; icmp_seq=30 ttl=E4 time=4,73 m=
64 bytes from 192,168.0,202: icnp_seg=43 ttl=64 time=7.94 mz B4 bytes from 192,168.7.102% icwp_seq=31 ttl=E4 time=4,84 ms
B4 bytes From 192,162,0,202: icmp_seq=44 t£l1=E4 time=7,75 ms B4 bytes from 1592,168.7,102; icmp_seq=32 ttl=64 time=3,75 ms
B4 bytes from 192,168,.0,202¢ icnp_seq=45 ttl=F4 time=8,51 msz 64 bytes from 192,168.7.102; icmp_seq=33 ttl=64 time=5.44 ms

Figure Al: Checking Connectivity During Moving

In order to verify network connectivity and handover between assigned access points, both selected
nodes (Carl and Tral) were pinging their respective service servers. The results, as shown in Figure
Al, indicate that when Carl and Tral cross the coverage range of their previously connected access
points, they automatically switch to the nearest access point (ap2 for Carl and ap4 for Tral), with no
packet loss recorded during the handover process.
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To further confirm the handover and mobility functionality of the nodes, the commands "Carl iw dev
Carl-wlanO link" and "Tral iw dev Tral-wlanO link" were executed for Carl and Tral, respectively,
both before and after the nodes' movement. Figure A2 shows that initially, Carl was connected to
apl, but after the handover, it successfully switched to ap2. Similarly, Figure A3 shows that initially,
Tral was connected to ap3, but after the movement, it successfully switched to ap4. Figure 10 displays
the topology after the nodes' movement, clearly indicating that Carl is now connected to ap2, and
Tralis connected to ap4.

mininet-wifi>|Carl iw dev Carl-wlan® link|
Connected to 02:00:00:00:06:00 (on Carl-wlan®)

mininet-wifi>[Carl iw dev Carl-wlan@ link |
freq: 5180 Connected to 02:00:00:00:07:00 (on Carl-wlan0)
RX: 371810 bytes (7990 packets)

TX: 40616 bytes (357 packets) req: 00

signal: -27 dBm RX: 12103 bytes (278 packets)

rx bitrate: 54.0 MBit/s ang? by;‘;sdé; packets)

tx bitrate: 6.0 MBit/s txgbitrate: 6.0 MBit/s

bss flags: short-slot-time bss flags: short-slot-time

dtim period: 2 dtim period: 2

beacon int: 100 beacon int: 100

a) Before Handover b) After Handover

Figure A2: Connected Access Point for Carl Before and After Handover/Moving

mininet-wifi>|Tral iw dev Tral-wlan® link | mininet-wifi>
Connected to 02:00:00:00:08:00 (on Tral-wlan®)

SSID: ssid-ap3)

ral 1w dev Tral-wlan0 (ink
Connected to 02:00:00:00:09: wlan0)
D d D4

freq: 5180 Teq: 5200
RX: 378904 bytes (8142 packets) S
TX: 41660 bytes (366 packets) RX: 7596 bytes (176 packets)
signal: -27 dBm T)f. 88 bytes (2 packets)
rx bitrate: 54.0 MBit/s signal: -27 dBm
tx bitrate: 6.0 MBit/s tx bitrate: 6.0 MBit/s
bss flags: short-slot-time bss flags: short-slot-time
dtim period: 2 dtim period: 2
beacon int: 160 beacon int: 100
a) Before Handover b) After Handover

Figure A3: Connected Access Point for Tral Before and After Handover/Moving

The position of the nodes and access points for scenario S1(5/6)4 before and after the movement and
handover are depicted in Figures 25 of Section 3 and 4, respectively. The comparison of these two
figures confirms that Mininet-WiFi can successfully simulate handover and movement scenarios for
coexisting railway and road environments. Although there is a delay in the handover process, there is
no loss of data during the transition. The nodes and stations undergo a network joining process during
the handover, which causes the delay.
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Figure A5: S1(5/6)4 Hosts and Access Points: Mininet-WiFi Graph (After Handover)

8.1.2 Reachability Test and Data Traffic Differentiation

For all nodes and hosts linked to the network topology S1(5/6)4, this test is conducted, and the
findings are displayed in Table Al. According to the table, Cars can communicate solely with other
Cars and the assigned road service server i.e., CarServer. Similarly, Trains can communicate only with
other Trains and the designated railway service server, i.e., RailServer.

Table Al: Reachability Test

Src/Dst Carl Car2 Car3 CarServer Tral Tra2 Tra3 RailServer

Carl U U U U X X X X
Car2 U U U U X X X X
Car3 U U U U X X X X
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CarServer U a U a X X X X
Tral X X X X a a a a
Tra2 X X X X a U U a
Tra3 X X X X a a a a

RailServer X X X X a U a a

8.1.3 UDP and TCP Transmission

The aim of this test is to demonstrate the typical data communication between cars and CarServer, as
well as between trains and RailServer. Figure A6 shows the transmission of UDP data packets, while
Figure A7 displays the transmission of TCP data packets from Tral to RailServer. In this scenario, Tral

is operating as a client, while RailServer is configured as a listening server.

Y

Ed_! Sc:enar‘lo# 1per‘F3 -c 192,168,7.104 -p 3 -u pd_! Scenar‘w# 1per‘F3 -5 p 3
Connecting to host 192,168.7,104, port 3

?] local 192,168,7,101 port 58331 connected to 192,168,7,104 port 3 Server listening on 3

T PR Firas ¥ "
[ 7] 0,00-1,00 sec 129 KBytes 1,05 Mbits/sec 91 Acocepted connection from 192,168.7,101, port 48978
[ 7] 1,00-2,00 sec 127 KBytes 1,04 Mbits/sec 90 [ 7] local 192,162.7,104 port 3 connected to 192,168,7.101 port 53391
[ 71 2.00-2,00 sec 123 KBytes 1,05 Mbits/sec 91 [ ID] Interval Transfer Bitrate Jitter Lost/Total Datag
[ 7] 3Z2.00-4,00 sec 129 KBytes 1,05 Mbits/sec 91 rams
[ 71 4.00-5,00 s=ec 127 KBytes 1,04 Mhits/sec 90 [ 71 0,00-1,00 sec 123 KBytes 1.01 Mbits/sec 0,270 m= 0787 (OX)
[ 7] G.00-6.00 =ec 129 KBytes 1.05 Mbits/sec 91 [ 7] 1.00-2.00 sec 127 KBuytes 1.04 Mbits/sec 0.205 ms 090 (0X)
[ 7] E.00-7,00 sec 127 KBytes 1,04 Mbits/sec 90 [ 7] 2.00-3,00 sec 129 KButes 1,05 Mbits/sec 0,167 ms 0791 {02}

7] 7.00-8,00  =ec 129 KBytes 1,06 Mhitsdsec 91 [ 7] 3.00-4,00 s=ec 127 KBytes 1,04 Mhitsdsec 0,615 me 0490 (0F)

7] 8,00-9,00  =ec 127 KBytes 1,04 Mbits/zec 90 [ 7] 4.00-5.00 =ec 129 KBytes 1,06 Mbits/sec 0,744 mz 0491 (0)

71 9.00-10,00 sec 129 KBytes 1,05 Mbitsdsec 91 [ 7] G.00-6,00 sec 127 KBytes 1.04 Mbits/sec 0,135 ms 090 (0X)
————————————————————————— [ 7] G.00-7,00 sec 129 KBytes 1.05 Mbitsdsec 0,480 mz 0/91 (0X)
[ ID] Interval Transfer Bitrate Jitter  Lost/Total Datag§[ 7]  7.00-8.00  sec 127 KBytes 1.04 Mbits/sec 0.295 ms 0/90 (0X)
rams [ 7] &.00-9,00 sec 129 KBytes 1.05 Mbitsisec 0,284 ms 0/91 (0X)
[ 71 0,00-10,00 sec 1,25 MBytes 1,05 Mbits/sec 0,000 ms 0/306 (0%) send@[ 7] 9,00-10,00 sec 127 KBytes 1,04 Mbits/sec 0,207 ms 090 (0F)
er [ 7] 10,00-10,05 sec 7,07 KBytes 1,28 Mbitsisec 0,166 ms 045 (0}
[ 7] 0,00-10,08 sec 1,25 MBytes 1.04 Mbits/sec 0,166 mz 0905 (0%) receff- - - - - - - - - - - - —-===—-= - - -
iver [ ID] Interval Transfer Bitrate Jitter Lozt Total Datag

rams

iperf Done, [ 7] 0,00-10,05 sec 1,25 HBytes 1,04 Mhits/sec 0,166 ms 04305 (0%) rece
rootESGRai IWPE : ‘homesstudent.  ITU=CodeTest ina/MuTopo/Mininet_Topologies/Tonzider Eiver
ed_Scenario#

Figure A6: UDP Data Packet Transmission from Tral to RailServer

e R LTt 0 T 0 0 4T 0 ) 00T a3 T £ e e 1 connect.ion from 0
aat@EGRa1 IWPE : Ahome student  ITUsCodeTest ing MyTopa/Hininet_Topologies/Consider oot@EGRallldPB /’home/student/DTUsCodeTest1ng/MyTopo/Hlmnet Topologies/Conzider]
= Scenamoﬂ iperf? —c 192,168,7.104 -p 3 =d_Scenario# iperf3 -z —p 3
port 2
P e e Poﬁ, Cerver listening on 3
[ Tranzfer Bitrate Retr  Cund
[ 0,00-1,00  zec 1,15 MBytes 9,67 Mbitsdzec 0 70,7 KBytes Heoepted connmection from 192,168,7,101, port 40736
[ 7] 1.00-2,00 sec 227 KBytes 6,78 Hbits/sec 0 110 KBytes 7] local 192,168.7.104 port 3 connected to 192,168,7.101 port 40748
[ 7] 2.00-2,00 sec 1,12 WBytes 9,38 Hhits/sec 0 148 KBytes 11] Interwval Transfer Bitrate
[ 7] 3Z.00-4,00 sec 700 KBytes 5,73 Hhits/sec 0 188 KBytes 7 0,00-1,00 =ec 748 KBytes B.13 Hhits/sec
[ 7] 4.00-5.00 sec 1.24 WBytes 10.4 Hbits/sec 0 228 KBytes F: 1.00-2,00  =ec 779 kButez £.38 Mbits zec
[ 7] G.00-6.00 sec 1.06 MBytes 9,86 Mbits/sec 0 266 KBytes 7 2.00-32.00  =ec 783 KButez B.42 Mbitsdzec
[ 7] G.00-7.00 sec 573 KBytes 4,69 Hbits/sec 0 305 KBytes i 3,00-4,00  =ec 779 EButes B.37 Mbits/sec
[ 7] 7.00-8,00 sec 1,30 MBytes 11,0 Hbits/sec 0 345 KBytes 7 4,00-5.00 =ssc 781 EBytes B.41 Mbits/sec
[ 7] B.,00-9,00 s=ec 764 KBytes B,25 Hbitsizec 1] 396 KBytes 7 G5.00-6,00 =ec 779 KBytes B,38 Mbitasdsec
[ 7] 9.00-10,00 =ec 891 KBytes 7.29 Hbits/sec 0 515 KBytes 7 B.00-7,00  =sec 781 KBytes 6,39 Mbitsdsec
————————————————————————— 7 F.00-8,01  =ec 788 KBytez B.42 Mbitsdzec
[ ID] Interval Tranzfer Bitrate Retr 7 8,01-9.00  =sec 773 KBytes B.36 Mbitsdsec
[ 7] 0.00-10,00 =zec 9,54 WBytez 8,00 Hbita/sec 0 zender 7 9,00-10,00 =sec 785 KBytes B.44 Mbitsdsec
[ 7] 0,00-10,69 s=ec 8,12 MBytes B,37 Mbita/sec receiver 71 10,00-10,B3 sec 940 KBytes B,40 Mbits/sec
iperf Tione, [ ID] Interval Transfer Bitrate
root@EGRai PGt home/student/ITlsCodeTest ingsMyTopos/Mininet_Topologies/Consider §[ 71  0,00-10,63 sec 8,12 MBytes 6,37 Hbitsfsec receiver
ed_Scenariod []
Server listening on 3

Figure A7: TCP Data Packet Transmission from Tral to RailServer
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8.1.4 Link Capacity Test

The measurement of link capacity between Carl and CarServer and Tral and RailServer is shown in
Figure A8. In coexistence scenarios for both roads and railways, the bandwidth measurement obtained
is enough to facilitate the transmission and reception of messages, voice, and video data.

mininet-wifi>[iperf Carl CarServer

**%*x Tperf: fe%‘ﬁ'ﬁmﬂ_ﬂ CarServer
***x| Results: |'5.62 Mbitsésec'i '6.29 Mbits/sec']
mininet-wifi>]|iper ra allServer

**x Tperf: testing TCP bandwidth between Tral and RailServer

FEE Resultg: ['7.82 Mbits/sec', '9.69 Mbits/sec']
mininet-wifi> |

Figure A8: Link Capacity Test

8.1.5 Latency Test and Network Jitter Test

The MTR tool is used to measure losses, latency, and network jitter. To conduct the latency test, 100
UDP and TCP data packets are sent from Carl to CarServer and Tral to RailServer. For this network
topology, the latency ranges between 3.6 to 5.9 milliseconds, as demonstrated in Figures A9 and A10.
Additionally, Figures A11 and A12 reveal that the network jitter ranges from 2.8 to 5.0 milliseconds.

=1 | ——— S

root@5GEai 1WPE: AhomeAstudent ITsCodeTesting/ MyTopo/Mininet _Topologies/Consider

ed_ScenariD#[mtr - —n —c 100 192 ,168,0,.204 —u —-P 3 |

Start: 2023-TE=ETIETUETd7FUZTNT

HOST: LGRaillPE Lo=ssi Sht La=t FAwg | Best  Wrst Stlew
1.1-— 192,168,0,204 0,0 100 5.3 4.9 Z.4 EB4.3 E.1

rootBSGEa1 1WPE: AhomeAstudent A DTUsCodeTestingMyTopo/Mininet _Topologies/Conzider

ed_Scenario# [mtr —r —n -c 100 192,168,0.204 -T P 3 |

Start: Z023-04-03TIETIaT 420200

HOST: GGRailliPE Lo=ssi Snht La=t Awg | Best  bWrast Stlew
1,1— 192,168,0,204 0,0 100 5.5 5.b 3.5 bHE.9 5% 5]
rootiBBGEa1 1WPE: AhomeAstudent ADTUszCodeTesting MyTopo/Mintret _Topologies/Consider

ed_Scenario# [

Figure A9: Latency Test from Carl

rootBEGRai 1WPE: Afhomesstudent - DTUsCodeTestingsMyToposMininet _TopologiessConzider
ed_Scenario# [mbtr —r —n —c 100 192 168, 7. 104 —u —F 3 |
Start: ZOZE-04-03T1E:10:41+0200
HOST: SGRaillPS Lossi Sht Last 'iii! Best  bWrst Sthew
3.E
inine

1,1— 192,168, .,.104 L 100 245 1.7 83,3 Bas

PDDt@EGHai1NTE;ﬁhﬂmEﬁELHdEDLﬁDIUEﬁDﬂEIEELADEﬁﬂHIDE;MT1 _TopologiessConsider

ed_Scenario# mbr —r —n —c 100 192, 168,7,.104 -T —P 3

Start: 2023-04-03T1E:15:S5+0200

HOS5T: 5GEaillPE Lo=sX Snht La=st Awg | Best  Wrst Stlew
1,1—— 192,168, 7.,.104 [ 0 8 100 RS 1.9 80.EB 7.9

rootBEGRa1 1WPE: Ahomesstudent - OTUsCodeTest ingAMyToposMininet _TopologiesAConsider

ed_Scenario#

Figure A10: Latency Test from Tral
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rooti@5GRai 1WPE : Ahomesstudent A DTUsCodeTestingHMyTopos/Mininet_Topologies /Consider
ed_ScenaPiD#|mtr -r -t —c 100 —o "LS BALY MI" 192 ,162,0,.204
Start: 2023-04-U3TIETL S S0+

HOST: SGEaillPE Lossi Snt Best Avg | Wrst Stlew  Jaug Jin
t

1,1—— 192,.162,0.204 0.0 100 3.4 5,01 B2.4 E.il o B L s
4

rooti@SGRai 1WPE : Ahomesstudent A DTUsCodeTestingMyToposMininet _Topologies/Consider
ed_Scenaric# JJ

Figure A11: Jitter Test from Carl

IPDDt@EGRai1MPE:fhnmefstudentHDTUSEDdeTestinngHTDpDHHininet_TDleDgiestDnsider
ed_Scenariod mtr —r —n —c 100 —o "[5 BAWY HI™ 192, 168,7.104
Start: 2023-04-03T16:19:18+0200

HOST: SGRaillPE Lio=si Sht Be=t Avg | W=t Stlew  Jawg Jin|
t

1,.1-—— 192,168,7.104 0L 1o 1.7 2.8 | 5L.5 4.9 1.0 By
2

rootBSGEal IWPE : Ahome/student - DTUzCodeTest ing/MyToposMininet _TopologiesConsider
ed_Scenario# |

Figure A12: Jitter Test from Tral

8.1.6 Sending a Message to the Assigned Server

The Scapy tool can be utilized in situations where it is necessary to transmit a message or information.
By utilizing this tool, users can send a custom message from any node or station to the designated
service server.

As an example scenario, let's say a message needs to be sent from Carl to CarServer. To achieve this,
an ICMP data packet can be created with the message "Msg: Carl is running with Speed 60 Km/hr"
and sent using the Scapy Python API through a Python script. Figure A13 shows the message creation
using the Scapy. The Wireshark tool can then be used to capture this data packet, as depicted in Figure
Al4.

rootREGEai 1WPE  Ahomesstudent - ITUzCodeTesting MyToposMininet _Topologies<Consider
ed_Scenario# =udo =capy
INFO: Can't import Py, bon't be able to use psdump() or pdfdumpi(l.

abPY/ A TASa

AT Ca I
sSYIAF S Spos  scplY/r. 1 Helcome o Scoapy
g SpRRRRRiSUPs. sSyYA AT 1 Version 2.4.5
ATA=AYTTYY T T Y Y 77 Ps eSS i
pPLCLCY A 1 htipsls el thal, comd secodew soagpy
SPPPPA Fa PPAA ALY ]
AR [T Sy 1 Hawe Fuml!
IR s a 1
PAAFA AN Cpe [Pz ] I He aae in Fraswe. we sy Skappee,
L APSPS S p il 1 OK? Hercio
sSYFFFAFA A A Yy caa S5 1 — Sebhastien Chabal
Y a pYSTa ]
SYPeY A e = B
20 SooalTs Gl =
SPLPY A TP Sps
Coancs

i, TPyt ke B Il
22 osend( IP(sre="192 162 ,0,201" .dst="192,162,0,204" ) AICHFP{ )~ "Mzg:Carl i= running with Speed B0 EmAhr")

éent 1 packets=,
> osend( IP(sre="192 168 ,0,201" . dst="192,162,0,204" )/ ICHP( )~ "Msg:Carl i= running with Speed B0 EmAhr")

Sent. 1 packets=,

Figure A13: Scapy: Message Creation from Carl to CarServer
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No. Time Source Destination Protocol Lengtt Info
5 5.6555405., 192,168.0.201 192.168.0.204 81 Echo (ping) request id=0x0000, seq=0/0, ttl=64 (reply in 6)
— 6 5.6555711.. 192.168.0.204 192.168.0.201 ICMP 81 Echo (ping) reply 1d=0x0000, seq=0/8, ttl=64 (request in 5)
76.1966028.. 02:eb:9f:67:c9:42 LLDP_Multicast LLoP 140 MA/00:00:00:00:00:16 PC/33 120

+ Frame 5: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface s22-eth3, id ©
+ Ethernet II, Src: 08:00:00_00:00:02 (80:00:00:00:00:02), Dst: 0P:00:00_00:P0:08 (PO:00:00:00:00:08)
» Internet Protocol Version 4. Src: 192.168.0.201, Dst: 192.168.0.204
c 08 00 60 60 60 ©8 00 OGP OO 60 @0 82 88 00 45 00 T -
2} 60 43 00 01 60 00 40 01 f7 d3 cO a8 00 c9 cb a8 -4
0926 08 cc 08 00 29 a8 08 00 060 00 4d 73 67 3a 43 61 ) -Msg:Ca
130 72 31 20 69 73 20 72 75 6e 6e 69 6e 67 20 77 69 rl is ru nning wi
74 68 20 53 70 65 65 64 20 36 30 20 4b 6d 2f 68 th speed 6@ Km/h

Figure A14: Wireshark: Scapy Packet with a Message

Similarly, using the Scapy a message is sent from Tral to RailServer with the message “Tral is running
on Time” as shown in Figure A15. This data packet is captured at RailServer using the Wireshark tool
shown in Figure A16.

rootRSGRai1 1WPE Shomesstudent  ADTUsCodeTesting/MyToposMininet _Topologies Conzider
rootiBEGRai 1WPE; Ahomesstudent ADTU=CodeTesting/MyToposHininet_Topologies /Conzidered_Scenario# =udo scapy
IMFO: Can't import PyX., Won't be able to use psdumpi) or pdfdumpll,

a5PY SRS
T I P i
sSY A Y Spes soplY /7 Pp I Helcome to Scapy
aup aapppRrppsSP S AP ST AL 1 Yersion 2.4.5
ATR=AYTYYYYY I/ Ps P P 1
pLCCCY A A p o5h5ps Y 1 hittpsis el thub, com'secodew soapy
SPPPPS A a PPl SY H
ASAR Pt S 1 Hawe fiml
PSR =Gl a 1
PSS pr [Py s ] I Me are in Franoce, we say Skappee.
SCoCCop S ApSP S A e Y 1 D7 Herci.
sYIELAS AP My caa SR 1 — Sebastien Chabal
caulyaP/ FYa pY/Ya |
=YAPeY A e als fp
=c  sccal Y/ £S5
splPY A P Sps
coaRcs

LErrn - e ) e
2 send(IP{src="192,162,7,101" . d=st="192 162, 7 . 104" 1A ICMP( )/ "M=g:Tral is running on Time")

éent 1 packets,
U gend(IP (ere="192,168,7.101" . d=t="192 168, 7 . 104" )} A ICHP{ ' "M=g:Tral is running on Time")

Sent 1 packets,

Figure A15: Scapy: Message Creation from Tral to RailServer

No. Time Source Destination Protocol Lengtt Info

5 4.6092268., 192.168.7.101 192.168.7.104 68 Echo (ping) request 1d-=8x8088, $eq=0/0, ttl=64 (reply in 6)

-— 6 4.6092662.. 192.168.7.104 192.168.7.101 ICHP 69 Echo (ping) reply 1d=0x0000, seq=0/0, ttl=64 (reguest in 5

+ Frame 5: 69 bytes on wire (552 bits), 69 bytes captured (552 bits) on interface s55-eth3, id @
» Ethernet II, Src: 88:00:00_00:00:01 (00:00:00:00:00:01), Dst: 90:00:00_00:00:87 (00:00:00:00:80:07)
» Internet Protocol Version 4. Src: 192.168.7.101, Dst: 192.168.7.104

JOC 00 60 00 00 PO ©7 0O 0 00 G0 00 01 08 @0 45 00 E
16 @0 37 00 01 €0 80 40 01 ea a7 c@ aB ©7 65 cB a8 7 @ e
20 07 68 08 00 ea 81 00 00 ©6 00 4d 73 67 3a 54 72 h Msg:Tr

0E30 61 31 20 69 73 20 72 75 6e 6e 69 6e 67 20 6f 6e Jal is ru nning on
146 20 54 69 Gd 65 Time

Figure A16: Wireshark: Scapy Packet with a Message
8.2 Implementation and tests for Coexistence Scenario 3

S2(5/6)1: Different Access Network and Shared Core, Single Serving Technology, Track Parallel to
Road: In this scenario, railway and road domains have different radio access networks, and both
domains share backhaul and core network infrastructure. In this considered scenario, railway tracks
are perpendicular to roads.
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8.2.1 Handover/Mobility

The mobility and handover capability of the nodes were tested by configuring Carl and Tral nodes

with mobility features. After a 60-second interval, Carl started moving towards access point ap2, Tral

moved towards access point ap4. During the nodes' movement, Carl pinged Car2, while Tral pinged

Tra2. The ping test results are shown in Figure 46,

indicating that when Carl entered the coverage

range of access point ap2 after leaving the edge of ap1, it successfully switched its connection from

apl to ap3. Similarly, when Tral entered the coverage range of access point ap4, it successfully

switched its connection from ap3 to ap4.

[ininet-wifi> Traint Ems Railserver ]
PI! 6(84) bytes of data.

/64 bytes fron 192.168.7.164: icap seqel ttl=64 time=12.2 ms
64 bytes from 192.168.7.
64 bytes from 192.168.7.
64 bytes from 192.168.7.
64 bytes from 192.168.7.
64 bytes from 192.168.7.
64 bnes from 192.168.7.

: icmp_seq=2 ttl=64 time=4.41 ms
1 icmp_seq=3 tt1=64 time=4.55 ms
: icap seq=4 ttl=64 time=3.45 ms
mp_seq=5 ttl=64 tine=2.13 ms
: icmp seq=6 ttl=64 time=1.93 ms
: tl=64 time=2.95 ms
g Jtt1=64 tine=4.37 ms

Traceback (most recent call last):
File */usr/lib/python3.8/threading.py", line 932, in bootstrap_inner
self.run()
File “/usr/lib/python3.8/threading.py*, line 876, in run

self. target(*self. args, **self. kuargs)

File "/usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.eg/mn wifi/mobility.py”,
self.config Links(mob_nodes)

File */usr/local/1ib/python3.8/dist-| nackages/lmne! wifi-2.5-py3.8.egg/an wifi/mobility.py",
ack = self.check in range(intf, ap intf

File "/usr/local/1ib/python3.8/dist-packages/mininet wifi-2.5-py3.8.eqg/mn wifi/mobility.py",
self.ap out of range(intf, ap_intf)

File */usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.ega/mn wifi/mobility.py",
intf.disconnect (ap_intf)

File "/usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/mn wifi/link.py*, line 551, in disconnect
self.iwdev_cad('{} disconnect’.format(self.name))

File */usr/local/ib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/mn wifi/link.py*, Lline 160, in iwdev cnd
return self.cnd(*iw dev', *args)

File */usr/local/lib/python3.8/dist-packages/mininet/link.py", line 70, in cmd
return self.node.cnd( *args, **kwargs

File */usr/local/lib/python3.8/dist-packages/mininet/node.py”, line 386, in cad
self.sendCnd( *args, **kwargs )

File */usr/local/lib/python3.8/dist-packages/mininet/node.py*, line 363, in sendCmd
assert self.shell and not self.vaiting

\ssertionError

line 171, in paraseters

line 196, in config links
line 139, in check in range

line 165, in ap_out of range}

64 bytes Tron 19 TJiT6d Tine=3.78 &5
64 bytes from 192 ttl=64 tine=5.89 ms
64 bytes fron 192 ETT ttl=64 tise=5.81 ms
64 bytes fron 192,168 ap seq=12 ttl=64 tise=5.91 ms
64 bytes fron 192,168.7.104: icap_seq=13 ttl=64 time=5.94 ms

Figure A17: Checking Con

filninet-wifl> Carl ping Carserver

PING 192.168.0.204 (192,168.0.204) 56(84) bytes of data.
: icmp_seq=l ttl=64 tine=28.4 ms

seq=] ttl=64 time=1.84 ms

64 bytes from 192.168.0.204: [Tchp_seq=tt1=64 tine=3.55 ms

64 bytes from 192.168.0. 0 seq=0|ttl=64 time=5.06 ms

Fiception in thread wifiparameters:

[rraceback (most recent call last):

File */usr/Lib/python3.8/threading.py*, line 932, in bootstrap_inner
self.run()

File */usr/lib/python3.8/threading.py*, line 879, in run
self._target(*self. args, **self. kargs)

File */usr/local/\ib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/an wifi/mobility.py",
self.config links(mob_nodes)

File */usr/local/1ib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/an wifi/mobility.py",
ack = self.check in range(intf, ap_intf)

File */usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/an wifi/mobility.py",
self.ap out of range(intf, ap intf)

File "/usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.eqg/an wifi/mobility.py",
intf.disconnect (ap_intf)

File “/usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/an wifi/link.py*, line 551, in disconnect
self.iwdev cad('{} disconnect’ .format (self.name))

File */usr/local/lib/python3.8/dist-packages/mininet wifi-2.5-py3.8.egg/an wifi/link.py*, line 160,
return self.cnd(*iw dev', *args)

File */usr/local/ib/python3. 8/dist- nackaqes/mmlnet/lmk py", line 70, in cnd
return self.node.cnd( *args, **kwargs )

File /usr/lo(a\/l\b/pylhnn! !/dm packages/mininet/node.py*, line 386, in cad
self.sendCad( *args, **kwai

File '/usr/lacal/hb/wmon!.!/ﬂlsx packages/mininet/node.py*, line 303, in sendCmd
assert self.shell and not self.waiting

fssertionError

line 171, in paraneters

line 196, in config links
line 139, in check in_range
line 185, in ap_out of rangd

in iwdev_cnd

b bytes from 192,168 ttl=64 tise=6.15 ms

B4 bvtes from 192.168.0.204: icmo seq=14 ttl=64 time=5.77 ms

nectivity During Moving

In order to verify the handover and mobility functionality of the nodes, a ping test was performed

between the selected nodes (Carl and Tral) a

nd their respective service servers. Figure Al7

demonstrates that during the nodes' movement, when they cross the coverage range of their

previously connected access points, they seamlessly switch to the nearest access point (ap2 for Carl

and ap4 for Tral). The results show that there is no packet loss during the handover process.

To further confirm the handover and mobility func
Carl-wlanO link" was executed for Carl, and "Tral
both before and after the nodes' movement. The
indicate that Carl was initially connected to apl b
ap2. Similarly, Tral was initially connected to ap3 b

tionality of the nodes, the command "Carl iw dev
iw dev Tral-wlanO link" was executed for Train1,
results are shown in Figures A18 and A19, which
ut, after the handover, it successfully switched to
ut, after the movement, it successfully switched to

ap4. Finally, Figure 49 displays the topology after the nodes' movement, demonstrating that Carl is

now connected to ap2, and Tral is connected to ap4.
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mininet-wifi>[Carl iw dev Carl-wlan® link]

mininet-wifi>[Carl iw dev Carl-wlan0® link ]

Connected to 02:00:00:00:08:00 (on Carl- wlanO)Connected to 02:00:00:00:09:00 (on Carl-wlan0)

SSID: ssid-apl

freq: 5180

RX: 19167 bytes (409 packets)
TX: 2236 bytes (21 packets)
signal: -27 dBm

rx bitrate: 54.0 MBit/s

tx bitrate: 54.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

a. Before Handover

SSID: ssid-ap2

freq: 5200

RX: 388479 bytes (8306 packets)
TX: 46700 bytes (413 packets)
signal: -27 dBm

rx bitrate: 54.0 MBit/s

tx bitrate: 54.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

b. After Handover

Figure A18: Connected Access Point for Carl Before and After Handover/Moving

mininet-wifi>
Connected to 02:00:
SSID: ssid- ap3
freq: 5180
RX: 33665 bytes (707 packets)
TX: 4444 bytes (41 packets)
signal: -27 dBm
rx bitrate: 54.0 MBit/s
tx bitrate: 54.0 MBit/s

Traliw dev

bss flags: short-slot-time
dtim period: 2
beacon int: 100

a. Before Handover

Tral.wlan® link

mininet-wifi>
on Trainl-wlan®) Connected to 02:00:

Tral jw dev Tral-wlan® link
:00:0b: (on Traini-wlan@)

SSID: ssid-ap4d

freq: 5200

RX: 6081 bytes (129 packets)

TX: 960 bytes (10 packets)

signal: -27 dBm

rx bitrate: 48.0 MBit/s

tx bitrate: 36.0 MBit/s

bss flags: short-slot-time
dtim period: 2
beacon int: 100

b. After Handover

Figure A19: Connected Access Point for Trainl Before and After Handover/Moving

In scenario S2(5/6)1, Figure 29 of Section 3 depicts the original configuration of nodes and access

points before their movement, while Figure A20 shows their positions after the movement and

handover. Comparing these two figures demonstrates that Mininet-WiFi is capable of simulating

moving and handover scenarios in a coexisting railway and road environment effectively. The

handover process incurs a delay due to the network joining process carried out by the nodes/stations,

but no data loss is recorded.

ol
Car2
? CarServer ) (&)Car3
T E3 Card
B ap2 o
apl
Tra2, & c :'.3 -
Q a s11 $22 $33 a
ap3
g & Tral
RailServer Trad & Tra3

Figure A20: S2(5/6)1 Handover Scenario: ONOS Screenshot
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Mininet-WiFi Graph
400
r4
car2 1 2 S
300 ap Lh ap
Carl
200
100
3 4 el
Tra2 Aap Ap ra3
Track Jrad
0
0 100 200 300 400

Figure A21: S2(5/6)1 Hosts and Access Points After Handover and Moving: Mininet-WiFi Graph

8.2.2 Reachability Test and Data Traffic Differentiation

For all nodes and hosts connected to network topology S2(5/6)1, this test is conducted, and Table A2
presents the results. According to the table, Cars can communicate solely with other Cars and assigned
road service servers, i.e., CarServer. Similarly, Trains can communicate only with other Trains and
assigned railway service servers, i.e., RailServer.

Table A2: Reachability Test

Src/Dst Carl Car2 Car3 Car4 CarServer Tral Tra2 Tra3 Trad RailServer

Carl v} v} Y u u X X X X X
Car2 u u U u u X X X X X
Car3 u u U u u X X X X X
Card u u U u u X X X X X
CarServer u u U u u X X X X X
Tral X X X X X a a a ] ]
Tra2 X X X X X u a U U U
Tra3 X X X X X u u u U U
Tr4 X X X X X u u Y U U
RailServer X X X X X u a U U U

8.2.3 TCP and UDP Data Transmission

The objective of this test is to demonstrate the standard data communication between cars to
CarServer and trains to RailServer. Figure A22 shows UDP data packet transmission and Figure A23
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shows TCP data packet transmission from Tr1 to RailServer. In this case, Tral is acting as the client,

and RailServer is configured as a listening server.

root@5GRai 1PE: shome/student/DTUsCodeTest ing/MyTopo/Mininet_Topologies/Considered_Scenario# iperts -s -p
Tpert3 -c 192.160.7, =u
onnecting to host 192, 4, port 4 Server listening on 4
2] local 1
1D] Interval Transfer Bitrate Total Datagrams Accepted connection from 192,168,7,101, port 52580
7 0,00-1,00 sec 129 KBytes 1,05 Mbits/sec 91 [ 7] local 192,168,7.104 port 4 connected to 192,168,7,101 port 44414
7 1.00-2,00 sec 127 KBytes 1,04 Mbits/sec 90 [ ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
7 2,00-3,00 sec 129 KBytes 1,05 Mbits/sec 91 [ 7] 0,00-1,00 sec 129 KBytes 1,05 Mbits/sec 0,028 ms 0/91 (0Z)
7 3,00-4,00 sec 127 KBytes 1,04 Mbits/sec 90 [ 7] 1.00-2,00 sec 127 KBytes 1,04 Mbits/sec 0,033 ms 0/30 (0%)
7]  4,00-5,00 sec 129 KBytes 1,05 Mbits/sec S1 [ 7] 2.00-3,00 sec 129 KBytes 1.05 Mbits/sec 0,032 ms 0/91 (0Z)
7 5,00-6,00 sec 129 KBytes 1,05 Mbits/sec 81 [ 7] 3.00-4,00 sec 127 KButes 1,04 Mbits/sec 0,088 ms 0/30 (0%)
7] 6.00-7,00 sec 127 KBytes 1,04 Mbits/sec 90 [ 7] 4.00-5,00 sec 129 KBytes 1.05 Mbits/sec 0.048 ms 0/91 (0Z)
7] 7.00-8,00 sec 129 KBytes 1,05 Mbits/sec 91 [ 7] 65.00-6,00 sec 127 KButes 1,04 Mbits/sec 0,034 ms 0730 (02)
7 8.00-9,00 sec 127 KBytes 1.04 Mbits/sec 90 [ 7] B.00-7,00 sec 123 KBytes 1,05 Mbits/sec 0,040 ms 0/91 (0Z)
v 9.00-10,00 sec 129 KBytes 1.05 Mbits/sec 91 [ 7] 7.00-8,00 sec 127 KButes 1,04 Mbits/sec 0,044 ms 0/90 (02)
————————————————————————— [ 7] 8.00-9.00 sec 129 KBytes 1,05 Mbits/sec 0,025 ms 0/91 (0%)
[ ID] Interval Transfer Bitrate Jitter  Lost/Total Datagrams [ 7] 9.00-10,00 sec 129 KBytes 1,05 Mbits/sec 0,038 ms 0/91 (02)
[ 7] 0.,00-10,00 sec 1.25 MBytes 1.05 Mbits/sec 0,000 ms 0/906 (0Z) sender @~ Q- - - - - ---------------=-----+
[ 7] 0.00-10,00 sec 1,25 MBytes 1,05 Mbits/sec 0,038 ms 0/906 (0%) receiver [ ID] Interval Transfer Bitrate Jitter  Lost/Total Datagrams
[ 7] 0,00-10,00 sec 1,25 MBytes 1,05 Mbits/sec 0,038 ms 0/906 (0Z) receiver
iperf Done.

iuut@SGRaxlUPS:/home/student/DTUsCodeTestlng/HgYopolﬂln1net_Topolog)es/Consldered_Scenarxol Server listening on 4

0

Server listening on 4

o c
cting to host 192,168,
88,7

ol P
7.104, port 4

7] local 192, 11 port 43220 connected to 192,168.7 Accepted connection from 192,168.7.101, port 49218

10 i e [ 7] local 192,168.7.104 port 4 connected to 192,168,7,101 port 49220
[ 7 4 31.3 MBytes 262 Mbits/sec 249 KBytes [ ID] Interval Transfer Bitrate
[ 7 1.00-2,03 sec 31,2 MBytes 254 Mbits/sec 0 321 KBytes [ 7 0,00-1,00 sec 31,2 MBytes 262 Mbits/sec
[ 7] 2.03-3,05 sec 31.2 MBytes 258 Mbits/sec 13 322 KBytes [ 7] 1.00-2,00 sec 30,3 MBytes 254 Mbits/sec
[ 7] 3.05-4,01 sec 27.5 MBytes 240 Mbits/sec 0 322 KBytes [ 7] 2.,00-3,00 sec 30.6 MBytes 257 Mbits/sec
[ 7] 4.01-5,03 sec 30,0 MBytes 248 Mbits/sec 1 322 KBytes [ 7] 3.00-4.00 sec 28.7 MBytes 241 Mbits/sec
[ 7] 5.03-6,04 sec 30,0 MBytes 248 Mbits/sec 8 322 KBytes [ 7] 4.,00-5,00 sec 29,6 MBytes 249 Mbits/sec
[ 7] 6.04-7.02 sec 28.8 MBytes 245 Mbits/sec 7 322 KBytes [ 7] 65.00-6.00 sec 29,7 MBytes 243 Mbits/sec
[ 7] 7.02-8.01 sec 32.5 MBytes 276 Mbits/sec 11 322 KBytes [ 7] 6.00-7.00 sec 29,1 MButes 244 Mbits/sec
[ 7] 8.01-9, sec 31,2 MBytes 265 Mbits/sec 1 322 KBytes [ 7] 7.00-8,00 sec 32,8 MBytes 276 Mbits/sec
[ 7] 9.00-10,01 sec 32,5 MBytes 270 Mbits/sec 0 322 KBytes [ 7] 8.00-8,00 sec 31.6 MBytes 265 Mbits/sec
------------------------- [ 7] 9.00-10,00 sec 32,2 MBytes 270 Mbits/sec
[ ID] Interval Transfer Bitrate Retr [ 7] 10,00-10.01 sec 386 KBytes 280 Mbits/sec
[ 7] 0.00-10,01 sec 306 MBytes 257 Mbits/sec 41 stnder: = Wz s emnos mmmeinssiminme me mm o
[ 7] 0.00-10,01 sec 306 MBytes 257 Mbits/sec receiver [ ID] Interval Transfer Bitrate

[ 7] 0,00-10,01 sec 306 MBytes 257 Mbits/sec receiver

iperf Done,
ioot@EGRaxlUPB:/home/student/DTUsEodeTesting/MgTopo/Mininet_Topulogies/Considered_Scenarioﬂ

Server listening on 4

0

Figure A23: TCP Data Packet Transmission from Trainl to RailServer

8.2.4 Link Capacity Test

This test is carried out using the iperf tool to measure the bandwidth between two network links. To
measure the bandwidth, the “iperf <Host1> <Host2>” command is used. Figure A24 shows the link
capacity measurement between Carl and CarServer and Trainl and RailServer. The achieved
bandwidth measurement shows that it is adequate to send and receive messages, voice, and video

data for coexistence scenarios for roads and railways.

*%% Starting CLI:
mininet-wifi=[1iperf Ta1 RailServer
etween

Tral gnd RailServer

and CarServer
'237 Mbits/sec', '239 Mbits/sec']

mininet-wifi>

Figure A24: Link Capacity Test
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8.2.5 Latency Test and Network Jitter Test

The MTR tool is used to measure losses, latency, and network jitter. To conduct the latency test, 100
UDP and TCP data packets are sent from Carl to CarServer and Tral to RailServer. The latency for this
network topology is in the range of 4.7 to 5.7 milliseconds. Figures A25 and A26 show the latency test
for the selected network topology.

Figure A27 shows that the jitter of the network is in the range of 5.2 to 5.5 milliseconds.

root@5GRai 1WPE; i /Mininet_Topologies/Consider
ed_Scenario# -r -n -c 100 192,168,0,204 -u -P
Start: 2022-039- $00:05+

HOST: SGRaillPE Loss? Snt Last [Avg |Best Urst Stlev
1,1-- 192,168,0,204 0,02 100 4,1 |4.8) 3.9 745 7.0

root@5GRai lWPE: /home/student /ITUsCodeTest ing/MyTopo/Hininet _Topologies/Consider
ed_Scenario#] mﬁr -+ -n -c 100 192.168.0,204 -1 P 3 1

Start: 2022-09-30117302:35+0200
HOST: SGRailWIPE Loss? Snt Last f[Rvg) Best Urst Stlev

1,1-- 192,168,0,204 0,02 100 4,1 (4.7) 3.9 58,2 5.4
root@5GRai 1UPE: shome/student/DTUsCodeTest ing/MyTopo/Hininet_Topologies/Considered_Scenario# i

Figure A25: Latency Test from Carl

Node:Tra 1

ininet_Topologies/Considered Scenario#

Loss®  Snt  Last [Hug) Best Hrst StDew
0,02 100 4.7 §5.,5) 4.3 5.8 4.8
=]esting/MyTopo/Mininet_Topologies/Considered_Scenariof

HOST* EGRaHWE Loss¥ Snt  Last [Hwa) Best Hrst Stlew
11— 152,168,7,104 008 100 7.0 15,71 4.3 521 4.8
root@5GRai lWPE: shome/student /DTUsCodeTest ing/MyTopo/Hininet_Topologies/Considered_Scenarion |J

Figure A26: Latency Test from Tral

po/mnmet Topologies/Considered_Scenario®

0 224:2 00
HOST: SGRalePS LossZ Snt Best Avg [ Wrst Stlev Javg Jint
1.1-- 192.168.7.104 0,02 100 4.3 1 5.5)%51.5 4.7 1.3 11.6
ioot!?SGF!ax 1WPE : /home/student/DTUsCodeTest ing/MyTopo/Mininet_Topologies/Considered_Scenario®

3. Network Jitter from Train1

aglliyTopo/Mininet _Topologies/Considered_Scenario#
192 168 0,204

Start X 3 0
HOST: SGRaxIUPG LossX Snt Best Wrst StDev Javg Jint
1.1-- 192,168,0,204 0,02 100 3.8 15,2)5%5.8 5.3 1.5 19.0

b. Network Jitter from Car1

rﬁotQSGRa 1 1WPE: /home/student/DTUsCodeTest ing/MyTopo/Mininet _Topologies/Considered_Scenario#®

Figure A27: Network Jitter Test
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8.2.6 Sending a Critical Message to the Assigned Server

To send a critical message or information, the Scapy tool is used for the considered scenarios. Using
this tool, a user-defined message is sent from any node/station to the assigned service server.

Figure A28 shows that an ICMP data packet is sent with a message “Emergency Msg: Engine Failure"
from node Tral to RailServer for demonstration purposes in the selected scenario. This data packet
can be sent using the Scapy Python APl and by writing a Python script. Figure A29 shows the data
packet captured using the Wireshark tool.

root@GRai 1WPE: /home/student/DTUsCodeTest ing/MyTopo/Mininet_Topologies/Considered_Scenario#fsudo scapy
INFO: Can't import PyX, Won't be able to use psdump() or pdfdump().

aSPY//YRSa
apppp Y/ /7114477 /YCa |
sY/////NSpcs  scpCY//Pp | Helcome to Scapy
ap apprrapSCP//Pp syY//C | Yersion 2.4.5
AYRsAYYYYYYYY///Ps cY//S |
pCCCCY//p cSSps /Y | httpsi//github, com/secdev/scapy
SPPPP///a pP//ICIY |
/A cf////C | Have fun!
p/l /e sC//7a |
P///NCpc A//Q | Craft packets like I craft my beer,
scoceop///pSP//p p/Y | Jean De Clerck
sY///111/77y caa s/wpo |
cafllyafP/Na pY/Ya
sY/PsY///NCc al//Np
sc  sccalY//PCuypaapP//YSs
spCPY//////PSps
ccCaacs

I Y
>> send(IP(src="192,168,7,101",dst="192,168,7,104")/ICHP( /"Emergency Meg:Engine Failure™)

t 1 packets, )
>> send(IP(src="192.168,7,101" ,dst="192,168,7.104" )/ICHP( _ /"Emergency Msg:Engine Failure")

t 1 packets,
o |

Figure A28: Scapy: Message Creation

54.082965.. 192.168.7.101 192.168.7.104 ICMP 70 Echo (ping) request 1id=0x0000, seq=0/0, ttl=64 (reply in ..

- 6 4.082982.. 192.168.7.104 192.168.7.101 ICMP 70 Echo (ping) reply id=0x0000, seq=0/0, ttl=64 (request i..

» Frame 5: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface s22-eth4, id ©

» Ethernet II, Src: 00:00:00_00:00:01 (00:00:00:00:00:01), Dst: 00:00:00_00:00:07 (00:00:00:00:00:07)
» Internet Protocol Version 4, Src: 192.168.7.101, Dst: 192.168.7.104

» Internet Control Message Protocol

00 00 00 00 00 07 00 GO 00 00 00 01 08 00 45 OO0 -« e E-
00 38 00 01 0O 0O 40 01 ea a6 cO a8 07 65 cO a8 8. @ -..--0:-
07 68 08 00 cd c1 00 60 00 00 45 6d 65 72 67 65 ~h...... ..Emerge
6e 63 79 20 4d 73 67 3a 45 6e 67 69 6e 65 20 46 ncy Msg: Engine F
) 61 69 6C 75 72 65 ailure

Figure A29: Wireshark: Scapy Packet with a Message
8.3 Implementation and tests for Coexistence Scenario 4

S4(5/6)1: Shared Access Network and Shared Core, Single Serving Technology, Track Parallel to
Road: In this scenario, railway and road domains share the radio access network along with backhaul
and core network infrastructure. Railway tracks are parallel to roads.
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8.3.1 Handover/Moving

The network's handover and mobility capabilities were evaluated by configuring Carl and Tral with
mobility features. After 60 seconds, Carl began moving towards access point ap2, while Tral started
moving towards access point ap4. While moving, Carl pinged Car2, and Tral pinged Tra2. The results
of the ping test demonstrate that when Carl reached the edge of access point apl and entered the
coverage range of access point ap2, it automatically switched its connection from ap1 to ap3. Similarly,
when Tral entered the coverage range of access point ap4, it switched its connection from ap3 to ap4.

B4 bytes from 192,168,0,202: icmp_szeq=7 ttl=Ed time=E,01 ms Ed bytes from 192,168,7,1027 icmp_zeq=2F ttl=E4 time=H.0E ms
B4 butes from 192,168,0,202: icmp_seq=0 ttl=64 time=G,32 m= B4 bytes from 192,168,7,1021 icmp_zeq=27 ttl=E4 time=H,2E ms
B4 bytes from 192,168,0,202: icmp_seq=3 ttl=E4 time=E,14 m=z E4 bytes from 192,168,7,102: icmp_seq=28 ttl=E4 time=8,10 mg
B4 bytes from 192,168,0,2021 icmp_zeq=10 ttl=64 time=G,28 m= B4 bytes from 192,168.7,102+ icmp_seq=29 ttl=F4 time=3,19 m=
B4 bytes from 192,168,0,202: icmp_seq=11 ttl1=F4 time=7,01 m= B4 bytes from 192,168,7,1021 icmp_seq=30 ttl=F4 time=7,93 mz
B4 bytes from 192,168.0,202¢ icmp_seq=12 ttl=E4 time=E,02 mz Ed bytes from 192,168,7,102: icwp_seq=31 ttl=G4 time=7,87 ms
B4 bytes from 192,168.0,202: icmp_seq=13 ttl=E4 time=E,10 ms Ed bytes from 192,168,7,102: icmp_seq=32 ttl=G4 time=7,B82 ms
Ed bytes from 192,168,0,202; icmp_zeq=14 ttl=64 time=6,31 m= B4 bytes from 192,168,7,102+ icmp_seq=33 ttl=F4 time=7,88 m=
B4 bytes from 192,168,0,202; icmp_seq=15 tt1=64 time=B,12 ms B4 bytes from 192,168,7,102: icmp_seq=34 ttl=F4 time=7,82 ms
B4 bytes from 192,163,0,202: icmp_zeq=16 ttl=E4 time=7,03 ms B4 bytes from 192,168,7,1021 icmp_seq=35 ttl=B4 time=7.77 ms
B4 bytes from 1592,168,0,2023 icmp_zeq=17 ttl=64 time=G,21 ms B4 bytes from 192,168,7,1027 icmp_seq=3E ttl=E4 time=7.75 ms
B4 bytes from 192,168,0,2027 icnp_zeq=18 ttl=64 time=G,12 ms B4 bytes from 192,168,7,102% icmp_zeq=37 ttl=E4 time=E,1E mg
B4 buytes from 192,168,0,202: icmp_zeq=13 ttl=64 time=4,24 mz Ed bytes from 192,168,7,102¢ icmp_seq=38 ttl=b4 time=8,24 ms
B4 bytes from 192,168,0,202¢ icmp_seq=20 ttl=F4 time=E,35 ms From 192, 168,7,101 icmp_seq=d0 Testination Host Unreachable
rom 192,165, 1L201 icmp_seq=21 Jestination Host Unreachable rrom 132.168,7,101 icnp_zeq=4l Destination Host Unreachable
From 192,163,0,201 icmp_seq=22 Destination Host Unreachable rrom 192,168,7,101 icmp_seq=42 Destination Host Unreachable
From 192,163,0,201 icmp_seq=23 Destination Host Unreachable rrom 192,168,7,101 icmp_seq=43 Testination Host Unreachable
From 192,168,0,201 icmp_seq=24 Destination Host Unreachable rrom 132,168,7,101 icnp_seq=44 Testination Host Unreachable
From 192,168,0.201 icmp_seq=20 Destination Host Unreachable crom 192,168, 7,101 jcmp seg=4h Jestination Host Unreachable
From 192,168,0,201 icmp_seq=26 Jestination Host Unreachable | Ed bytes from 192,168,7,102: icwp_seq=4E ttl=G4|time=94.3 mz
B4 bytes from 192,168,0,202: icmp_zeq=27 ttl=64 Rime=1178 m= B4 bytes from 192,168.7,102: icmp_seq=47 ttl=G4 time=7.53 ms
B4 bytes from 192,168,0,202: icmp_seq=28 ttl=fd time=1FY mz E4 bytes from 1592,168,7,102¢ icmp_seq=48 ttl=E4 time=12.E ms
B4 bytes from 192,1F8,0,202¢ icmp_seq=29 ttl=F4 time=2,3F ms B4 bytes from 192,168,7,102% icmp_seq=43 ttl=f4 time=7,01 ms
B4 butes from 192,168.0,202: icmp_seq=30 ttl=Ed time=7,18 m=s B4 bytes from 192,168,7,102: icmp_zeq=90 ttl=B4 time=7.73 ms
B4 bytes from 192,168,0,202¢ icmp_seq=31 ttl=64 time=G,77 ms Ed bytes from 192,168,7,102; icmp_seq=51 ttl=E4 time=85,09 mg
G4 bytes from 192,168.0,202¢ icnp_seq=32 ttl=64 time=B,0E msz B4 butes from 132,188.7,102: icwp_seq=0Z ttl=Bd4 time=7.52 ms
B4 bytes from 192,168,0,2027 icmp_seq=33 ttl=G4 time=11,7 mz B4 butes from 132,168.7,102; iomp_seq=53 ttl=fid tine=7,93 ns
B4 bytes from 192,168.0,202: icmp_seq=34 ttl=G4 time=7,1F m=z Ed bytes from 192,168.7,1027 icmp_zeq=hd ttl=kd time=7,23 ms
B4 bytes from 192,168,0,202: icmp_zeq=35 ttl=64 time=7,E3 m=z B4 bytes from 192,168.7,102: icmp_zeq=05 ttl=E4 time=20.E ms

Figure A30: Checking Connectivity During Moving

The network connectivity and handover between assigned access points are tested by pinging the
respective service servers of selected nodes (Carl and Tral). Figure A30 shows that when Carl and
Trainl cross the coverage range of their previously connected access points, they connect to the
nearest access point (ap2 for Carl and ap4 for Tral) automatically. The figure also shows that there is
no packet loss during the handover process.

To further validate the handover and mobility functionality of the nodes, the command "Carl iw dev
Carl-wlanO link" is executed for Carl, and "Tral iw dev Tral-wlanO link" is executed for Tral, both
before and after the nodes' movement. Figure A31 illustrates that Carl was initially connected to ap1
but, after the handover, it successfully switched to ap2. Similarly, Figure A32 demonstrates that Tral
was initially connected to ap3, but after the movement, it successfully switched to ap4. Figure A33
presents the topology after the nodes' movement, indicating that Carl is now connected to ap2, and
Tralis connected to ap4.
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. . mininet-wifi>[Carl iw dev Carl-wlan® link]
mininet-wifi>|Carl iw dev Carl-wlan0 link Connected to 82:00:00:00:05:00 (on Carl-wlan®)

Connected to 02:00:00:00:04:00 (on Carl-wlan0) ISSID’ ssid-aEZ
freq: 5200
freq: 5180 RX: 433396 bytes (8435 packets)
RX: 10058 bytes (234 packets) TX: 4854792 bytes (3190 packets)
TX: 88 bytes (2 packets) signal: -27 dBm
signal: -27 dBm rx bitrate: 54.0 MBit/s
tx bitrate: 6.0 MBit/s tx bitrate: 6.0 MBit/s
bss flags: short-slot-time bss flags: short-slot-time
dtim period: 2 dtim period: 2
beacon int: 100 beacon int: 100

a) Before Handover b)After Handover

Figure A31: Connected Access Point for Carl Before and After Handover/Moving

mininet-wifi>[Tral iw dev Tral-wlan® Link | mininet-wifi>|Tral iw dev Tral-wlanQ link |
Connected to 02:00:00:00:05:00 (on Tral-wlan@) Connected to 02:00:00:00:04:00 (on Tral-wlan0)
freq: 5200 freq: 5180
RX: 21284 bytes (494 packets) RX: 696727 bytes (16079 packets)
TX: 88 bytes (2 packets) TX: 688 bytes (27 packets)
signal: -27 dBm signal: -27 dBm
tx bitrate: 6.0 MBit/s tx bitrate: 6.0 MBit/s
bss flags: short-slot-time bss flags: short-slot-time
dtim period: 2 dtim period: 2
beacon int: 100 beacon int: 100
L b) After Handover

Figure A32: Connected Access Point for Tral Before and After Handover/Moving

s C
Car2 & arServer e

(=]

k0204

H— 8 —8 5o

|
Tral =)

RailServer

Figure A33: S4(5/6)1 Shared Access Network and Shared Core, Single, Track Parallel to Road: ONOS
Screenshot (After Handover)

The comparison between these figures indicates that Mininet-WiFi can effectively simulate moving
and handover scenarios for both railway and road environments. Although there is a delay during the
handover process, no data loss is recorded. This delay happens due to the network joining process
carried out by the nodes or stations while switching access points.
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Figure A34: S4(5/6)1 Hosts and Access Points: Mininet-WiFi Graph (After Handover)

|8.3.2 Reachability Test and Data Traffic Differentiation

This test is performed on all nodes and hosts connected to the network topology S4(5/6)1, and the
results are presented in Table A3. As per the table, Cars can communicate only with other Cars and
the designated road service server i.e., CarServer. Likewise, Trains can communicate solely with other
Trains and the designated railway service server i.e., RailServer.

Table A3: Reachability Test

Src/Dst Car1 Car2 CarServer Tra1 Tra2 RailServer
Car1 v v v X X X
Car2 v v v X X X

CarServer v v v X X X
Tra1 X X X v 4 v
Tra2 X X X v v v

RailServer X X X 4 4 v
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8.3.3 UDP and TCP Transmission

This test is designed to showcase the standard data communication between cars and CarServer, as
well as between trains and RailServer. The transmission of UDP data packets is depicted in Figure A35,
while the transmission of TCP data packets is illustrated in Figure A36. In this scenario, Train1 functions

as a client, and RailServer is set up as a listening server.

Hooepted connection from 192,168,7.101, port 58150
7] local 192,168.7,104 port 4 connected to 192,168,7,101 port 55804
ranater bitrate 1

: - m
d_Scenario# 1per‘F3 -c 192,168, T 104 —p 4 -u
onnecting to host 192,168,7,104, port 4

CIEE T, TEd L0 o2, 10, 7. 100 port &
10] Interwal Transfer Bitrate Total Datagrams
71 0.00-1,00  sec 129 KButes 1.05 Mbits/sec 91

L0000 sec 123 KBytes
L0 sec 127 EButes

1 Mbits/zec 0,680 me 0487
4 Mbits/sec 1,575 me 0430

r

[ 0,00-1 1.0 (0}

[ 1.00-2 1.0 (0]
71 1.00-2,00  sec 127 KBytes 1,04 Hbits/zec 90 [ 7] 2.00-3,00 sec 127 Khytes 1.04 Mhits/zec 1,004 me (/90 (0X)
7] 2,00-3,00 sec 129 KBytes 1,05 Mbits/sec 91 [ 7] 3.00-4,00 sec 123 KBytes 1,06 Mbitsisec 0,567 ms 0/31 (OX)
71 Z.00-4,02  zec 127 KBytes 1,02 Hhits/sec 90 [ 7] 4.00-5,01 sec 127 KBytes 1,04 Mbits/sec 1,454 ms 0/80 (0X)
7] 4,02-5,00 sec 129 KBytes 1,07 Mbitafsec 91 [ 7] G.01-B.00 sec 129 KBytes 1,06 Mbits/sec 0,487 me 031 (0X)
7] G00-6,00  sec 129 KBytes 1,06 Mbits/sec 91 [ 7] E.00-7.00 sec 129 Kytes 1,08 Mbits/zec 1,111 me 0491 (0X)
7] BO0-7.00  sec 127 KBytes 1,04 Mhitsfzec 90 [ 7] 7.00-8,00 sec 127 KBytes 1,04 Mbits/sec 1,686 me 030 (0X)
71 T.00-8,00  sec 129 KBytes 1,08 Mbitsfsec 91 [ 7] 8.00-3,00 sec 123 KBytes 1,05 Mbits/sec 0,268 ms 0/31 (0X)
7] B.00-9,00 sec 127 KBytes 1,08 Mbitsfsec 90 [ 7] 9.00-10,00 sec 127 KBytes 1,04 Mbitsisec 1,581 me 080 (0Z)
71 9.00-10,00 sec 129 KButes 1,05 Mbits/sec 91 [ 7] 10,00-10,05 sec 7,07 Kutes 1,20 Mhits/zec 1.274 me (45 (0R)

[ 101 Interwval Transfer Bitrate Jitter Lost/Total Datagfl ID] Interval Transfer Bitrate Jitter Lost/Total Datag
~ams rans
[ 7] 0,00-10,00 sec 1,25 MBytes 1,05 Mbitsfsec 0,000 me 0/908 (0%) sendf[ 71 0,00-10,05 sec 1,25 MButes 1,04 Mbits/sec 1,374 ms 0/906 (0%} rece
iver

Elg
[ 71 0,00-10,05 sec 1,25 MBytes 1,04 Mbits/sec 1,374 ms 0905 (0Z) rece
iver Server listening on 4

iperf Tone. i

Figure A35: UDP Data Packet Transmission from Trainl to RailServer

Ed_! Scenar‘loﬂ 1per‘F3 -c 192,168, ? 104 —p 4 berver listening on 4
Connecting to host 192,168.7.104, port 4
7] local 192,168.7,101 port B0330 connected to 192,168,7.104 port 4 Aocepted connection from 192,168,7.101, port BOZ70
TIT Trterval TransTer Titrate Fetr - Lwnd 7] local 192,168.7.104 port 4 connected to 192,168,7,101 port BOZ80
71 0,00-1,00  sec 1,02 MBytes 8,52 Mbits/sec 0 B7.9 KBytes In] Interval Tranzfer Bitrate
[ 7] 1.00-2.00 sec 1018 KButes 85.33 Hbits/sec 0 103 KButes 7 0,00-1,00  =zec EBE3 KBytes 5,59 Mbits/sec
[ 7] 2,00-3,00 sec 764 KBytes B.26 Mbits/sec 5 51,9 KBytes 7 1,00-2,00  =zec 718 KBytes 5,87 Mbits/sec
[ 7] 3Z.00-4,00 =ec B35 KBytes 5,21 Mbits/sec 0 113 KBytes 7 2,00-3.00  =ec 724 KBytes 5,94 Mbits/sec
[ 7] 4,00-5.00 =ec 827 KBytes G,79 Mbits/sec [y] 123 KBytes 7 2,00-4,00  sec 71 KBytes 5,85 Mbitsdsec
[ 7] G.00-6.00 =ec G73 KBytes 4,69 Mhits/zec 0 127 KBytes 7 4,00-5.00 sec 720 KButes 5.91 Mbits/sec
[ 7] B.O0-7.00 sec 764 KBytes 6,25 Mbitsdsec 0 127 KBytes 7 0,00-6,00  =ec V20 KBytes 5,90 Mbits/szec
[ 7] 7.00-8,00 =ec B27 KBytes 6,78 Mbits/zec 0 127 KBytes 7 B.O0-7,00  zec 720 KBytes 5,90 Mbits/sec
7] 8.00-9,00  sec G636 KBytes 5.21 Mbits/sec 0 132 KBytes 7 FOO0-8,00  sec 718 KBytes 5,88 Hbits/sec
71  9.00-10,00 sec 636 KBytes 5,22 Mbits/sec 0 141 KBytes 7 8.00-3.00  =zec 718 KButes 5.88 Mbits/sec
————————————————————————— 7 9,00-10,00 =zec  F20 KBytes 5,90 Mbits/szec
[ ID] Interval Transfer Bitrate Retr 71 10.00-10,23 =ec 164 kBytes 5,85 Mbits/sec
[ 7] 0.00-10,00 sec 7.54 HBytes 6,33 Mbitsdsec 5 sepder: 5 e S sieiaiiin st i s e i
[ 71 0,00-10,23 =ec 7,15 WBytes 5,86 Mhits/sec receiver B[ I1] Interval Tranzfer Bitrate
[ 7] 0,00-10,23 sec 7,15 WBytes 5,86 Mbits/sec receiver
iperf llone,
root@56Rai IWPE: Ahomes student /DTUsCadeTest ing/HuTopa/Hininet_Topologies/Consider fServer listening on 4
ed_Scenario# -

Figure A36: TCP Data Packet Transmission from Train1 to RailServer

8.3.4 Link Capacity Test

This test is carried out using the iperf tool to measure the bandwidth between two network links. To
measure the bandwidth, the iperf <Host1> <Host2> command is used. Figure A37 shows the link
capacity measurement between Carl and CarServer and Tral and RailServer. The achieved bandwidth
measurement shows that it is adequate to send and receive messages, voice, and video data for
coexistence scenarios for roads and railways.

mininet-wifi> Jiperf Carl CarServer |
*** Iperf: testing TCP bandwidth between Carl and CarServer

***% Results: ;'5.75 Mbits/sec', '7.32 Mbits/sec'ﬂ
mininet-wifi>[ipert lral Rallserver|

#%% Iperf: testing ICP_bandwidth between Tral and RailServer
#x* Results:| 'E:gi Mbits/sec', '7.99 Mbits/sec']|
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Figure A37: Link Capacity Test

8.3.5 Latency Test and Network Jitter Test

To measure losses, latency, and network jitter, the MTR tool is used. 100 UDP and TCP data packets
are transmitted from Carl to CarServer and Tral to RailServer to carry out the latency test. For this
network topology, the latency ranges from 4.9 to 5.3 milliseconds, as shown in Figures A38 and A39.
Moreover, Figures A40 and A41 exhibit that the network jitter ranges from 4.3 to 6.1 milliseconds.

root@GRa1 1WPE: Ahomes student  OTUsCodeTest ing/MyToposMininet _Topologiesd/Consider

ed_Scenario# mtr -r -n -c 100 192,168,0,204 -u -P 3 |
otart: 2025-04-041121 503 4a+0200

HOST: SGRaillPE LoszZ  Snt Last | Awg| Best llrst Stlew
1.1-- 132,168,0,204 0L0% 100 4.6 | 5,1 3.6 Bl &8
root@SGRa1 1 WPE: Ahomesstudent TITUsCodeTest ing /My ToposMininet _Topologies/Consider

+|:I_Scenar*in# mtr —-r -n —-c 100 192,168,0,204 -T -F 3|

Start: AUZAa-d-Ug] T sl hhHA00

HOST: GGRaillPE Loz=2  Snt Last Best  lWrst Sthew
B

1.1-—- 192,168,0,204 0L0E 100 4.5 A7 bS8 Bl
root@aGRa1 1WPE : Ahomes student ITUsCodeTest i ng /My ToposMiirEL _Topologies/Tonsider
ed_Scenario# JJ

Figure A38: Latency Test from Carl

i H 'wwm.i-et_mmlngiesfcmmer
jo# =l i |92 Ee, 7104 —y —F 4

Start: Z023-04-04T12:152:10E+020
HOST: SGEaillWPE Lo==® Sht La=t wg | Best  brst StDew
1.1—— 192,168,.7,104 0L 100 4.3 4.9 &2 Bhih E.3

Het_Topologies/Conzider

d_Scenario# mtr —r —n —c 100 192, 168,7.104 -T —F 4
arti SU2a—0d—0gd [ 1275597 24+0-000
HOST: GGRaillPE Loss® Snt Last Awg fBest  lWrst Stlew
1,.1—— 192,168,7,104 0L0E 100 B.7 4.9 3.2 45,9 4.4

rooti@BGEa1 1WPE : Ahomesstudent / OTsCodeTestingMyTopo/Mininet _Topol ogiessConsider
ed_Scenaric# JJ

Figure A39: Latency Test from Tral

B i it rhomesstudentAMTH=CodeTest i ngMyTopnsHininet_Topologies<Consider
d_Scenario# mtr -+ -n —c 100 —o "L5 BAWY MI" 192,168,0,204
L.

e A = T LA T E T A0

HOST: SGRaillPE Lozs& Snt Best  [Pwg] lWrst Sthew  Jawg Jin
L
1,1— 192,168,0,204 0.0 100 2.6 |B.l] 580 FEB 8.F b2,
i

rootEbGREai LWPE: homesstudent/ ITUzCodeTest ingAMyTopo/Mininet _Topologies/Consider
ed_Scenaric# i

Figure A40: Network Jitter from Carl
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opologies Conzider

HI:IST EGEalllLlF'E Loz=¥ Snt  Best | Awvg | Wrst Stlew  Jawg Jin
t

Ll A B e, oL 100 .2 QA5 ydl.s 5.8 1.2 13,
1

rootB8GRal LWPE : AhomesstudentITUsCodeTest ing My Topo/Mininet _Topologies/Consider
ed_Scenario# [

Figure A41: Network Jitter Test from Tral

8.3.6 Sending a Message to the Assigned Server

The Scapy tool is a useful tool for transmitting messages and information in various scenarios. It allows
users to send customized messages from any node or station to a designated service server.

Let's consider an example scenario where a message needs to be sent from Carl to CarServer. To
accomplish this, we can create an ICMP data packet with the message "Msg: Carl is running with
Speed 60 Km/hr" using the Scapy Python APl within a Python script. Figure A42 illustrates the message
creation process using Scapy. Finally, we can use the Wireshark tool to capture the data packet, as
depicted in Figure A43.

root@5GREai 1WPE: Ahomesstudent A ITUsCodeTest ing MyToposMininet _Topologies/Consider
ed_Scenarioc# =udo =capy
IMFO: Can't import Pyi, Won't be able to use psdumpl(l) or pdfdumpil.,

aSPY/ A TASa
apupppdl YA A AL A a 1
SYF AT Spos  sopl Y/ fPp I Helcome to Scapy
ape ARRRARRSLPY PR syTs AT 1 Version 2.4.5
ATA=ATTY T TY Y 7/ Ps o¥/75 1
LY A p e55ps WY 1 hitpsisfrithub ., comd secdew/ scagy
SPPPPS S a s Wy 1
Al A [t Ly I Hawve Fuiml
i sLAf a 1
P Cpe ASSR 1 Eraft me if you can.
PSP AP e ] — IPwh lager
sYA LSS Ay can S£P 1
i Ya P Ya
sYPeY A e als e
sc  sccalY/s,
spLPY /A TP Sps
CCascs

u=ing IPchon [=PEc
s sendl IP(src="132,168,0,201" .dst="132,1658,0, 204" }KICHP(}K M=giCarl i= running with Speed B0 EmShr")

Sent 1 packet=,
2 send( IP{src="192 162, 0, 201" .dst="132 162, 0, 204" )/ ICHFP{ ) "Msg:Carl is running with Speed B0 Emshe")

éent 1 packet=,

Figure A42: Scapy: Message Creation from Carl to CarServer

No. Time Source B B Destination Protocol Lengtt Info

3 2.6374126.. 192.168.0.201 192.168.0.204 81 Echo (ping) request 1d=0x08008, seq=0/8, ttl=64 (reply in 4)

4 2.6374356.. 192.168.0.204 192.168.0.201 ICMP 81 Echo (ping) reply id=ex0000, seqg=0/0, ttl=64 (request in 3}

Frame 3: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface s3-eth3, id @
Ethernet II, Src: ©0:00:00_00:00:02 (PO:00:00:00:08:02), Dst: PO:00:0P_BO:00:08 (6A:00:00:00:00:08)
Internet Protocol Version 4, Src: 192.168.0.201, Dst: 192.168.08.204

Internet Control Message Protocol

D00 60 80 00 00 OO ©8 00 GO 00 OO O 02 ©8 00 45 09 £
610 00 43 00 ©1 00 00 40 81 f7 d3 cO aB 00 c9 cO as c @
@0 cc 08 00 29 a8 00 0@ 00 00 4d 73 67 3a 43 61 ) Msg:Ca

72 31 20 69 73 20 72 75 Ge 6e 69 6e 67 20 77 69 ri is ru nning wi
74 68 20 53 70 65 65 64 20 36 30 20 4b 6d 2f 68 | th Speed 60 Km/h
72 r

Figure A43: Wireshark: Scapy Packet with a Message
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Similarly, using the Scapy a message is sent from Tral to RailServer with the message “Tral is
running on Time” as shown in Figure A44. This data packet is captured at RailServer using the
Wireshark tool shown in Figure A45.

rootB5GRa1 1WPE : “homesstudent A OTUsCodeTest ing " MuTopos " MHininet_TopologiessConsider
ed_ Scenarico# =udo scapy
IMFO: Can't import PyX, bWon't be able to use psdumpf) o~ pdFdumpol .

aS5PYS A TRSa
it ot B R ] ]
SY AN Spos  scplY- /" Pp I Melicome to Scapay
angr S =YL 1 Yersion 2.4 5
ATA=ATY T YT YT T/ s o0 et ]
LY A eShps u Y I Iittpsis e i by, Comr secrbesars siagny
SPPPPSS S a U S L R 1
AR ol s AT I Hawve Fuml
s sCA 7 a 1
PAss e I MHe ase inn Fraswee. s soyg Skapgpec.
SECCCEges S PSP S P I DKZ? Hercia
SYWIALFFFSFAFAy caa S5 1 — Sebastien Chalsal
P £ Y Ta ]
= e P | s
= socal YA ypaapall PP AT Ss
SpllPY TP Ses
CCAatS

Lo N e e e e
> send{ IP(src="192 162, 7,101 " . det="192,162 ., 7. 104" 1A ICHFP( )/ "M=g:Tral i=s running on Time")

ent 1 packets=,
»r sendCIP(src="192 168, 7.101" . d=t="192 1628, 7. 104" 1/ ICHMP{ )}/ "M=g:Tral i=s running on Time")

Figure A44: Scapy: Message Creation from Tral to RailServer

No. Time Source B Destination Protacol Length Info

5 5,1596597.. 192,168.7.1081 192.168.7.104 69 Eche (ping) request 1id=0x0888, seq=0/6, ttl=64 (reply in &)

6 5.1590816.. 192.168.7.104 192.168.7.101 IcMP 69 Echo (ping) reply 1d=0x0000, seq=0/0, ttl=64 (request in 5)

+ Frame 5: 69 bytes on wire (552 bits), 69 bytes captured (552 bits) on interface s3-eth4, id ©

» Ethernet II, Src: 60:00:00 00:00:01 (00:00:00:00:00:01), Dst: 00:00:00 P0:00:07 (00:00:00:00:00:07)
+ Internet Protocol Version 4, Src: 192.168.7.101, Dst: 192.168.7.104

+ Internet Control Message Protocol

068 66 60 60 60 67 B0 B 08 60 60 01 B8 0@ 45 0O E
00 37 60 G1 B@ @@ 48 ©1 ea a7 c® a8 B7 65 cO a8 7@ e
07 68 08 B0 ea 81 B0 80 0B 00 4d 73 67 3a 54 72 h Msg:Tr
61 31 20 69 73 20 72 75 6e Ge 69 6e 67 20 6f 6e |al is ru nning on
20 54 69 6d 65 Time

Figure A45: Wireshark: Scapy Packet with a Message
8.4 Implementation and tests for Coexistence Scenario 5

S4(5/6)4: Shared Access Network and Shared Core, Single Serving Technology, Track Perpendicular
to Road: In this considered scenario, the network deployment infrastructures are similar to those of
scenario S4(5/6)1, but in this case, railway tracks are kept perpendicular to roads.

8.4.1 Handover/Moving

Carland Tral have been configured with mobility capabilities to analyse handover and mobility. After
60 seconds, Carl starts moving towards access point ap2, while Tral moves towards access point ap4.
During their movement, Carl pings Car2 and Tral pings Tra2. Figure A46 depicts the results of the ping
test, which show that as Carl reaches the edge of access point apl and enters the coverage range of
access point ap2, it switches its connection from ap1 to ap3. Similarly, when Tral enters the coverage
range of access point ap4, it switches its connection from ap3 to ap4.
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64 bytes from 132,168,0,203; icmp_seq=3l tt1=64 tine=11.3 ns B4 hytes from 192,168,7,104¢ icnp_seq=28 ttl=64 time=5,99 ms
64 bytes from 132,168.0,203; icmp_seq=32 ttl=64 tine=11.5 ms g4 hytes from 192,168,7,104¢ icnp_seq=29 ttl=Ed time=5,34 ms
64 bytes from 192,168,0,203;: icwp_seq=33 ttl=B4 tine=12.1 ns g4 bytes from 192,168,7,104: icnp_seq=30 ttl=Ed time=5,08 ms
E4 bytes from 192,168,0,203; icmp_seq=34 ttl=B4 time=11.7 ns g4 pytes from 192,168,7,104: icwp_seq=31 ttl=E4 time=5,22 ms
64 bytes from 132,168,0,203; icmp_seq=33 tt1=64 time=11.4 ms g4 pytes from 192,168,7,104: icnp_seq=32 ttl=Bd time=5,90 ms
64 bytes from 192,168,0,203: icmp_seq=36 th1=64 time=11.7 ms G4 bytes from 192,168,7,104; icrp_seq=33 ttl=Bd time=5,33 ms
64 bytes from 192,168,0,203; icmp_seq=37 ttl=B4 tine=12.3 ms g4 bytes from 192,168,7,104; icwp_seq=34 ttl=64 time=5,24 ms
64 bytes from 132,168,0,203; icmp_seq=38 ttl=64 time=11.6 ms B4 bytes from 192,168,7,104; icmp_seq=35 ttl=64 tine=3.84 ms
64 bytes from 192,168,0,203: icmp_seq=33 ttl=64 time=11.3 ms B4 bytes from 192,168,7,104: icnp_seq=36 ttl=64 time=2.3A m
64 bytes from 132,168,0,203; icmp_seq=40 ttl=64 time=13.2 ms B4 bytes from 192,168,7,104: icnp_seq=37 tt1=G4 time
B4 bytes from 132,168,0,203; icmp_seq=4l ttl=6d4 time=12,0 ms B4 bytes from 192,168,7.104: icmp_seq=38 ttl=Fd time=I.EY¥ m=
B4 bytes from 182,168,0,203: icwp_seq=42 tt1=64 time=3.B0 ms B4 bytes from 192,168,7.104: icmp_zeq=39 tt1=54 time=3.09 ms
B4 bytes from 182,168,0,203; icmp_seq=43 ttl=Bd4 time=6.31 ms B4 bytes from 199,168,7.104: icmp_seq=40 tt1=5d time=4.E5 ms
JA0d: icmp_seq=41 tt1=64 time=10.2 ms

64 bytes from 132,168,0,203; icnp_seq=44 ttl=64 time=8.31 ms B4 bytes from 192,168

2 from 192,168,0.202: icup seq=dh thl=Rd time=11.9 B4 bytes from 192,168,7,104: icmp_seq=42 tt1=F4 time=5,33 ms
E4 bytes from 152,168,7.104: icmp_zeq=43 ttl=E4 time=5.8d4 mz
B4 bytes from 192,168,7,1041 icmp_seq=44 ttl=64 time=11.3 ms
E4 bytes from 152,168,7,104; icmp_seq=45 ttl=E4 time=0,E5 mz
B4 bytes from 192,168,7,1047 icmp_seq=46 ttl=B4 time=5.77 ms
B4 butes from 192,168,7,1047 icmp_seq=47 ttl=E4 time=5,65 ms
B4 bytes from 192,168,7,1047 icmp_zeq=48 ttl=64 time=6,93 ms
B4 bytes from 192,168,0,203; icmp_seq=h2 ttl=Gd4 times1043 ms| Fd4 bytes from 192,168,7,104: icmp_seq=49 ttl=64 tine=5.66 ms
64 bytes from 192,168,0,203; icnp_seq=53 ttl=hd4 time=I9,T ms B4 bytes from 192,168,7,104: icmp_seq=50 ttl1=64 tine=5,24 ms
B4 bytes from 132,168,0,203) icmp_seq=04 ttl=64 time=12,1 ms B4 butes from 192.168.7.104¢ icmp zeq=51 tt1=G4 time=5.34 ms

| buyte: = El =

rom 192,168,0,201 icmp_seq=46 Dlestination Host Unreachable
rom 192,168,0,200 icmp_seq=47 Destination Host Unreachable
rom 192,168,0,201 icmp_geq=48 Destination Host Unreachable
rom 192,168,0,201 icmp_seq=49 Dlestination Host Unreachable
From 192,168,0,200 icmp_seq=50 Destination Host Unreachable
rom 192,168,0,201 icmp_seq=5l Dlestination Host Unreachable

B Rt B R o R

Figure A46: Checking Connectivity During Moving

To verify the handover and mobility functionality of the nodes, both Carl and Tral are pinging their
respective service servers. Figure A46 demonstrates that when Carl and Tral move beyond the
coverage range of their original access points, they automatically connect to the nearest access point
(ap2 for Carl and ap4 for Tral). The figure also shows that the handover process is smooth with no
packet loss.

To further confirm the handover and mobility capability of the nodes, the command "Carl iw dev
Carl-wlanO link" is executed for Carl, and "Tral iw dev Tral-wlanO link" is executed for Tral, both
before and after the nodes' movement. Figure A47 illustrates that Carl was initially connected to ap1,
but after the handover, it successfully switched to ap2. Similarly, Figure A48 demonstrates that Tral
was initially connected to ap3, but after the movement, it successfully switched to ap4.

mininet-wifi> [Carl iw dev Carl-wlan@ link] mininet-wifi>|Carl iw dev Carl-wland link |
Connected to 02:00:00:00:06:00 (on Carl-wlan@) Connected to 02:00:00:00:07:00 (on Carl-wlan@)
[SSID: ssid-apl]
freq: 5200 freq: 5180
RX: 21887 bytes (466 packets) RX: 3293569 bytes (76021 packets)

TX: 2644 bytes (25 packets) .
signal: -27 dBm TX: 2944 bytes (121 packets)

rx bitrate: 54.0 MBit/s signal: -27 dBm
tx bitrate: 54.0 MBit/s tx bitrate: 6.0 MBit/s
bss flags: short-slot-time bss flags: short-slot-time
dtim period: 2 dtim period: 2
beacon int: 100 beacon int: 100
3] Before Handover b) After Handover

Figure A47: Connected Access Point for Carl Before and After Handover/Moving
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mininet-wifi>|[Tral iw dev Tral-wlan® link |

Connected to 02:00:00:00:06:00 (on Tral-wlan®)

[SSID: ssid-apl|
freq: 5200

RX: 9776 bytes (209 packets)
TX: 1192 bytes (12 packets)

signal: -27 dBm
rx bitrate:

bss flags:
dtim period: 2
beacon int: 100

54.0 MBit/s
tx bitrate: 54.0 MBit/s

mininet-wifi>

Tral iw dev Tral-wlan@ Llink |

Connected to
SSID: ssid-apl
freq: 5200

2:00:00:00:06:00 (on Tral-wlan0)

RX: 3388285 bytes (78190 packets)

signal: -27 dBm

short-slot-time

bss flags:
dtim period: 2
beacon int: 100

TX: 4012 bytes (135 packets)

rx bitrate: 48.0 MBit/s
tx bitrate: 6.0 MBit/s

short-slot-time

Figure A48: Connected Access Point for Tral Before and After Handover/Moving

Figure A49 and A50 show the updated positions after the nodes moved and handover took place. The
comparison of these figures demonstrates that Mininet-WiFi is capable of simulating mobility and
handover scenarios in railway and road environments effectively. Although there may be a delay
during the handover process due to the network joining procedure carried out by the nodes or

stations, there is no recorded data loss.

Tral

Figure A49: S4(5/6)4 Shared Access Network and Shared Core, Track Perpendicular to Road: ONOS
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Figure A50: S4(5/6)4 Hosts and Access Points: Mininet-WiFi Graph (After Handover)

8.4.2 Reachability Test and Data Traffic Differentiation

For all nodes and hosts linked to the network topology S4(5/6)4, this test is conducted, and the
findings are displayed in Table A4. According to the table, Cars can communicate solely with other
Cars and the assigned road service server i.e., CarServer. Similarly, Trains can communicate only with
other Trains and the designated railway service server i.e., RailServer.

Table A4: Reachability Test

Src/Dst Carl Car2 Car3 CarServer Tral Tra2 Tra3 RailServer

Carl a U a a X X X X
Car2 a a a a X X X X
Car3 a a a a X X X X
CarServer a U a a X X X X
Tral X X X X u U U u
Tra2 X X X X a a a a
Tra3 X X X X a U U a
RailServer X X X X a a a a

8.4.3 UDP and TCP Transmission

The purpose of this test is to demonstrate the typical data communication between cars and
CarServer, as well as between trains and RailServer. Figure A51 illustrates the transmission of UDP
data packets, while Figure A52 shows the transmission of TCP data packets from Tral to RailServer. In
this scenario, Tral acts as a client, while RailServer is configured as a listening server.

root@5GRai LUPE: Ahonesstudent I TIsCodeTest ing/MuToposHininet_TopologiesdConsidered. [ ID] Interval Tranzfer Bitrate Jitter Lost#Total Datagram
Ecenapjoit ipert3 iperf3 -c 192, 168.7,104 -p 4 —-u L rootEEGRa1 LWPE: dhone/student DTUsCodeTest inn/MuTono/Mininet Topologiess/Considered_
Connecting to host 192,168,7,104, port & Scenario# iperf3 -z -p 4 r

[ 7] local 192,168,7,101 port 51848 connected to 192,168,7,104 port 4

[ 10] Interval Tranzfer Bitrate Total Datagrams Server listening on 4

[ 7] 000-1,00 sec 129 KBytes 1,06 Hbitsfsec 91

[ 7] 1.00-2,00 =ec 129 KBytes 1,06 Hbitafsec 91 Accepted connection from 192,168.7.101, port 34832

[ 7] 2,00-3,00 sec 127 KButes 1,04 Hbitsfsec 30 [ 7] local 132,168.7,104 port 4 connected to 192,168.7,101 port 51848

[ 7] 3.00-4,00 sec 127 KBytes 1,04 Hbits/sec 30 [ ID] Interval Tranzfer Bitrate Jitter Lost/Total Datagram
[ 7] 4,00-5,00 sec 129 KBytes 1,05 Hbitsfsec 91 £

[ 7] 5.00-6,00 sec 179 KBytes 1,06 Mhitsfzec 91 [ 7] 0.00-1.00 sec 122 KBytes 395 Kbitsdzec 0,702 mz 0486 (0X)

[ 7] B.00-7,00 s=ec 127 KBytes 1,04 fbits/zec 30 [ 7] 1.00-2,00 sec 129 KBytes 1,00 Mbits/sec 0,476 ms 0431 [0X)

[ 7] 7.00-8,00 sec 129 KBytes 1,00 Hbitsdsec J1 [ 7] 2.00-Z,00 sec 127 KBytes 1,04 Mbitsfsec 0,973 ms 0490 (0X)

[ 7] £.00-9,00 sec 127 KBytes 1,04 Hbits/sec 90 [ 71 Z.00-4,00 sec 129 KBytes 1,05 Mbits/sec 0,894 ms 0791 [0}

[ 7] 9,00-10,00 sec 129 KBytes 1,06 Hbitsfsec 91 [ 71 4,00-5,00 sec 197 KRytes 1,04 Whits/sec 1,320 ms 090 (0X)
————————————————————————— [ 7] G5.00-6,00 sec 129 KBytes 1,00 Mbits/sec 0,502 ms 0491 [0X)

[ ID] Interval Transfer Bitrate Jitter Lost/Total Datagramfl 7]  B.00-7.00 sec 129 KBytes 1,05 Mbitsfsec 0,667 m= 0491 [0X)

= [ 7] 7.00-8,00 sec 1237 KBytes 1,04 Mbitsfsec 2,580 ms 0490 (0}

[ 71 0.,00-10,00 szec 1,25 HBytes 1,08 Mhitsfsec 0,000 me 07906 (02) sender [§[ 71 8.00-9.00 sec 129 KBytes 1,05 Mbitsfsec 1.408 ms 0/91 (DX}

[ 7] 0.00-10,05 sec 1.25 MButes 1.0d4 Mbits/sec 1.218 me 07905 (0#) receivef[ 7] 39.00-10.00 sec 127 KBytes 1,04 Mbits/sec 1,433 ms 0/90 (02}

T [ 7] 10,00-10,05 sec 5,65 KDytes 944 Kbitsdsec 1,218 ms 044 (0F)

iperf Tlone, [ ID] Interual Transfer Bitrate Jitter Lozt Total Datagram
root@SGRai LUPE:  home/student ITUzCodeTesting/MyToposMininet_Topologies/Conzidered_ §9

Scenaric# [| [LF] 0.00-10.0% sec 1.25 MButes 1.04 Mbitsfsec 1.210 ms 04005 (02 recei

Figure A51: UDP Data Packet Transmission from Tral to RailServer
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rootESGRa1 IWPE : Ahomer student /ITUsCodeTest ing/HyToposHininet_Topologies/Considered_ fPcenariod iperf3 -z -p 4

Ecenario# iperf? iperf3 -c 192,168,7.104 -p 4 |

Connecting to host I92.I6E.7.104, port 4 Server listening on 4
7] local 192,168,7.101 port 53334 connected to 192,168,7,104 port 4
I]]] Interval Transfer Bitrate Retr  Cund Hecepted connection from 192 188.7,101, port 53378
71 0.o0-1.00  sec 721 KBytes 5.91 Mbitadsec 0 53,7 KBytes 7] local 192,168.7,104 port 4 connected to 192,168,7,.101 port 53394
71 1.00-2,00  sec 382 KButss 3,13 Mbitsfsec 2 49,5 KBytes I0] Interwal Transfer Bitrate
7] 2,00-3,00  sec 509 KBytes 4,17 Mbits/sec 0 55,1 EBytes 7 0,00-1,00  sec 430 KBytez 3,02 Hbits/zec
71 3.00-4.00  sec 509 KButes 4,17 Hbitsdsec 0 5E.6 KButes 7 1,00-2,00 sec 450 kKBytes 3,67 Mbits/zec
7] 4,00-5,00  sec 392 KBytss 3,13 Hbitsdsec 0 E2,2 KBytes 7 2,00-32,00  szec 451 KBytes 3,70 Hbits/zec
7] B.00-B,00  sec 445 KBytes 3,65 Mbits/szec 0 E7.9 EBytes 7 2.00-4,00  szec 451 KBytez 3,89 Hbits/zec
71 BLO0-F.00  sec  B36 KButes 5,21 Mbitadsec 2 5.0 KButes 7 4,00-5,00 sec 480 KBytes 3,69 Hbitsz/zec
7] 7.00-8,00  sec 392 KBytes 3,12 Hbitsdsec 0 BE,5 KBytes T B.00-6,00  sec 480 KBytes 3,88 Hbits/sec
7] 2,00-9,00  sec 292 KBytes 32,14 Mbitszec 0 E7,9 EBytes 7 6.00-7,00  =zec 451 KBytez 3,70 Hbits/zec
71 3.00-10.00 sec 573 KButes 4,63 Mbitadsec 2 43,5 KBytes 7 T00-8,00  sec 448 KBytes 3,67 Mbitsz/zec

************************* i B,00-9,00  sec 480 KBytes 3,B8 Mbits/sec
1] Interval Transfer Bitrate Retr 7 9,00-10,00 zec 454 KBytez 3,71 Mbits/zec
71 0.00-10,00 sec 4.81 MBytes 4.03 Mbitsdsec [ sender 7l o10,00-10,14 sec 59,1 KBytes 3,42 Mbits/sec
71 0,00-10,14 sec 4,43 MBytes 3,67 Hbitsdsec receiver

10] Interval Transfer Ritrate

iperf Done 71 0.00-10,14 sec 4,43 MButes 3,67 Mbits/sec receiver

root@SGRallldPE Fhamed student/ITUsCodeTest ing/HyTopa/Hininet _Topologies/Considered_

Scenario# Server liztening on 4

n

Figure A52: TCP Data Packet Transmission from Train1 to RailServer

8.4.4 Link Capacity Test

This test is carried out using the iperf tool to measure the bandwidth between two network links. To
measure the bandwidth, the iperf <Host1> <Host2> command is used. Figure A53 shows the link
capacity measurement between Carl and CarServer and Tral and RailServer. The achieved bandwidth
measurement shows that it is adequate to send and receive messages, voice, and video data for
coexistence scenarios for roads and railways.

mininet-wifi> |iperf Carl CarServer |
**x Iperf: testing TCP bandwidth between Carl and CarServer
***% Results: ['3.53 Mbits/sec', '4.37 Mbits/sec']|

mininet-wifi> [Iperf Tral RailServer]|

*** Iperf: testing TCP bandwidth between Tral and RailServer

*** |[Resylts: ['3.51 Mbits/sec', '4.32 Mbits/sec']|

Figure A53: Link Capacity Test

| 8.4.5 Latency Test and Network Jitter Test

The MTR tool is utilized to measure losses, latency, and network jitter. To perform the latency test,
100 UDP and TCP data packets are transmitted from Carl to CarServer and Tral to RailServer. For this
network topology, the latency ranges between 7.2 to 17.7 milliseconds, as depicted in Figures A54 and
A55. Additionally, Figures A56 and A57 demonstrate that the network jitter ranges from 7.1 to 7.2
milliseconds.
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Wl et L2l

rootidhGRai 1MPE ; Fhomesstudent A ITUzCodeTest ingSMyTopo/Mininet_Topologies Conzsider

ed_Scenario# mtr —r -n -c 100 152,168.0,204 -u -F 35 |

Start: 2023-04-20T17 181 24+0200

HOST: SGRailllPG Loz=f Snt  Last | Awg | Best lWrst Stlew
1.1-- 192,1658,0,204 0.0 100 5.9 | %2 5.3 EBIL.E B3

root@hGRai 1MPE f AhomesdstudentITzCodeTest ingMyTopo/Mininet _Topologies Conzider

ed_Scenaric# | mtr -r -n —c 100 192,168,0,204 -T -F 2

Start: 2023-04-20T17:1h: s1+0200

HOST: SGRailllPE Loz=% Snt  Last |Awg | Best  lWrst Stlew
1.1-- 192.168,0,204 0.0F 100 EB.d [E.5] Bl B2H H.Z

rooti@hGRai 1WPE ; Fhomesdstudent A ITHzCodeTest ingAMyTopo/Mintnet_Topologies Conzider

ed_Scenario# [

Figure A54: Latency Test from Carl

rootbGRai lPE: home/student AT TUsCodeTest ing/MuToposHininet _Topologies/Conzidered_
Scenario# mbr —r -n -—c 100 192 168, 7,104 -u -F 4 |
Start: 2023-04-20T16:26 1 5E+0200
HOST: SGRaillPE Lozz¥ Snt  Last |Awg| Best llkst Stlew

1,1-- 192,168,7.104 QL0E 100 B.H [AE] B BEAH h)h
rootBGRail LPE: home/student A0 TUsCodeTest ing/MuyToposHininet _Topologies/Conzidered_
Scenario#[mtr —r -n —c 100 192,168,.7,104 -T -P 4 |
Start: ZOZ3-04-20T16:29:00+0200
HOS5T: GGRailllFE Lozz¥ Snt  Last [Avg] Best llrst Stlew

1,1-— 192,168,7.104 oL0E 100 9,2 [17.7| 5.6 1023, 101.7
rootihGRai IWPE: shome/student A TTUsCodeTest ing/MuyToposHininet _Topologies/Conzidered_
Scenariot il

Figure A55: Latency Test from Tral

wde: Car

root@hGRai 1IWPE  Ahomesstudent A0TUzCodeTest ingMyTopos/Mininet_TopologiesConzider
ed_Scenario# mtr - —n —c 100 —o "LS BAWY MI" 192,168,0,204 |
Start: Z023-04-25T17:18:47+0200

HOST: GGEREaillPE Lossd Snt Best Avg | Wrst Stlew Jawg Jin
57

1.1—— 19Z,168,0,204 0,08 100 B2 |F.1| 58,0 bB,9 2.2 2.
]

rootiBbGRai IWPE: shomesstudent A DTUzCodeTest ingMyTopo/Mininet _TopologiesTonzider
ed_Scenario# [

Figure A56: Network Jitter Test from Carl

root@0GRai INPE: fhomestudent/ ITUzCodeTest ing/MyTopo/Mininet _Topologies/Conzidered_
scenariok|mtr -+ -n -c 100 -o "L5 BAWY MI7 152,168,7,104 |
Start: 2025-04=20T1Ey b 24+0200

HOST: BLRai 1WPE Loged  Snt Best  [Bwg | Wrst StDev  Javg Jint
1:)-= 192,168, 7,104 l.08 100 BB |%2|EEE E.2 1.8 16.5
rootEhGRai INPE: Ahomedztudent ITUsCode Test ing /My Topo/Hininet_Topologies/Considered_

o

Figure A57: Network Jitter Test from Tral
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8.4.6 Sending a Message to the Assigned Server

The Scapy tool is a powerful tool for sending customized messages and information from any node or
station to a designated service server. In various scenarios, users can utilize Scapy to create and
transmit data packets efficiently.

For instance, consider an example scenario where a message needs to be sent from Carl to CarServer.
In this case, a user can create an ICMP data packet with the message "Msg: Carl is running with Speed
60 Km/hr" using the Scapy Python API within a Python script, as shown in Figure A58. After that, the
data packet can be captured using the Wireshark tool, as illustrated in Figure A59.

Similarly, Scapy can be used to send a message from Tral to RailServer with the message "Tral is
running on Time", as demonstrated in Figure A60. The data packet can then be captured using
Wireshark at RailServer, as depicted in Figure A61.

In summary, Scapy is a powerful tool for sending critical messages and information, while Wireshark
offers a convenient way to capture and analyse these data packets in various scenarios.
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To craft a packet, you have to be a
packet, and learn how to swim in

the wires and in the waves,
— Jeanr{Llade Yan Dosse

bent 1 packets,

bent 1 packets,

uzing [Puthon B.3.0

o gend (IR sre="192 168, 0, 201" . det="192 188, 0. 204" Y/ ICHP{ 3/ "M=a:Carl iz running with Speed B0 Emshr")

b sendl IP(erc="192,168,0,201" . det="192 . 168, 0, 204" )/ ICHP{ 3/ "M=g:Carl iz runhing with Speed BO Kmehr")

Figure A58: Scapy: Message Creation from Carl to CarServer

Time  Source Destination

9 10.651697.. 192,168.0.201

192.168.0. 20

Protocol Lengtt Info

10 10.651718.. 192.168.0.204 192.168.0.20

» Frame 9: 81 bytes on wire (648 bits), 81 bytes captured

+ Ethernet II, Src: £0:00:00_00:00:02 (00:00:00:00:00:02),

4 81 Echo (ping) request did=0xpPeee, seq=0/0, ttl=64 (reply in 1)

1 ICHP 81 Echo (ping) reply

(648 bits) on interface s22-eth3, id @
Dst: 00:00:00 _00:00:08 (00:00:00:00:00:08)

+ Internet Protocol Version 4, Src: 192.168.0.201, Dst: 192.168.0.204

» Internet Control Message Protocol

G20 00 0O 0O 90 6O 68 00 00 00 60 00 02 B8 00 45 00
016 B0 43 PO ©1 00 B0 40 01 f7 d3 cO a8 60 c9 co a8

. E
c....8

620 00 cc B8 00 29 a8 00 00 00 00 4d 73 67 3a 43 61
[ 72 31 20 69 73 20 72 75 6e 6e 69 6e 67 20 77 69
74 68 20 53 70 65 65 64 20 36 30 20 4b 6d 2f 68

72

) Msg:Ca
ri is ru nning wi
th Speed 60 Km/h
r

1d=8x8688, seq=0/0, ttl=64 (request in 9)

Figure A59: Wireshark: Scapy Packet with a Message
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Figure A60: Scapy: Message Creation from Tral to RailServer

No. Time Source Destination Protocol Length Info

5 4.7133120.. 192 .168.7.101 L168.7. request  1d=6x@888, Seq=8/8, LL1=64 (reply in 6

—omall



